Using Empirical Analysis of Music
Corpora to Optimize Web Audio Playback

Tom Collins
Music Artificial Intelligence Algorithms, Inc.
P.O. Box 73004
Davis, CA 95617
tomthecollins@gmail.com

ABSTRACT

Due to feasibility issues and musical preferences, Web au-
dio applications have tended to emphasize the use of syn-
thesized instruments and short samples (e.g., drums) over
large banks of longer files that sample other acoustic instru-
ments such as a violin or piano. As the sounds generated
by sampled acoustic instruments are quite realistic, they are
likely to be of interest to many users of Web audio applica-
tions. Using the Tone.js Web Audio framework, this paper
describes an initial investigation into load times when ren-
dering music with such sampled instruments. A method
is proposed for reducing load times, and hence optimizing
Web Audio playback, based on empirical analysis of the note
durations used across different music corpora. Experimen-
tal results for 400 randomly selected short music excerpts
indicate that the proposed method does lead to significant
load time reductions, from 3.87 s to 1.72s. Researchers inter-
ested in replicating the results of these experiments or down-
loading and exploring our playback solution are pointed to
http://tomcollinsresearch.net /research/wac,/2016/

1. INTRODUCTION

One of many interesting application types to emerge from
recent Web audio work is the browser-based interface for
writing a song or piece of music |11} 3] [§]. Playback in such
applications entails various challenges for the Web audio
developer. One challenge is that to achieve instantaneous
and accurate playback, the required audio content has to be
loaded into the AudioBuffer, but this content may be fixed
only moments before a user presses ‘play’. Synthesizers and
drum tracks tend not to place too many demands on the
loading process, consisting typically of oscillator definitions
and manipulations, and short small audio files respectively.
If a user has the need for realistic violin or piano sounds,
however, playback could involve the loading of longer, larger
audio files belonging to a sampled instrument.

In this paper we investigate the above scenario, as well
as the extent to which empirical analysis of music corpora
— specifically knowledge of durational properties — can lead
to the definition of sampled instruments with quicker load

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4-6, 2016, Atlanta, USA.

(© 2016 Copyright held by the owner/author(s).

Christian Coulon
Music Artificial Intelligence Algorithms, Inc.
P.O. Box 73004
_ Davis, CA 95617
christianco@gmail.com

o
)

—Haydn
---Chopin
805 ---Sample Bank
S —95th Percentile
304
) |
ks 1t
20.3 |\
c 1
(o) 1
= i
go.2 ||
w |
Q i
TO.1 | A
I ‘ TN~ = ‘\: N ,\\ re \\/ AN \\ e
0 L ! bk AN v o
0 2 4 6 8 10 12

Note Duration (s)

Figure 1: Empirical density functions for note dura-
tions (seconds) in pieces by Haydn (solid blue line),
Chopin (dashed green line), and in an instrument
sample bank (dashed black line). The vertical solid
red line indicates the 95th percentile of the Haydn
durations distribution, which happens to equal that
of the Chopin durations distribution.

times, hence optimizing Web audio playback. For the sample
bank duration distribution indicated by the dashed black
line in Fig. [the mean duration of an audio file is 8.59s,
standard deviation 2.43s. Such long samples ensure that if a
song/piece requires a sustained instance of a note, then there
is sufficient audio material to render it. An analysis of the
note durations used by two different composers, as shown
in Fig. |1} suggests that very few notes approach these long
durations, however, with nearly 95% of notes lasting 1s or
less. It seems inefficient to load a long audio file if 95% of the
time a truncated 1s version of it will suffice. Loading such
long files places unnecessary demands on the AudioBuffer,
which may undermine instantaneous and accurate playback.

The premise of this paper is that for any given sampled
instrument, we should maintain the original, long audio
files alongside a bank of copies truncated to ~1s in dura-
tion. When a user presses play, it can be determined easily
whether the use of MIDI note y in her/his song always lasts
less than this ~1s threshold. If so, the audio can be loaded
from the truncated bank of files rather than the original,
long versions. The outcome could be reduced demand on
the AudioBuffer, reduced load time, and an optimized play-
back. After reviewing some methods for playback optimiza-

http://tomcollinsresearch.net/research/wac/2016/

tion already in use in desktop and Web contexts, we describe
two experiments using the Tone.js Web Audio framework [6]
7] that investigate load times and the potential benefits of
truncated sample banks.

2. EXISTING APPROACHES

The literature on sample-based synthesis cannot be re-
viewed thoroughly given the current scope. Heuristics ex-
ist in Desktop digital audio workstations for reducing the
amount of audio material that has to be loaded to render
a given sampled instrument. In Apple’s Logic Pro [2], one
WAV file might be loaded to render a piano playing MIDI
note number y, and this same audio data is then pitch shifted
to render any occurrences of the surrounding MIDI notes
y—2,y—1,y+1,y+ 2. The amount of audio material that
has to be loaded is reduced, therefore, here by a factor of
five. A downside of pitch shifting is that it is often possible
to tell that a note has been altered, due to the introduction
of artifacts, which makes the playback sound less authentic.

Scheduling is another heuristic that can reduce instanta-
neous load demands, and has been discussed recently in the
context of Web audio [9]. The idea of scheduling is to spread
loading of audio material across the playback epoch, so that
rather than all the required audio files being loaded at time
zero, any given audio file is buffered a fixed time prior to
being rendered. In this way, scheduling can reduce the wait
time when a user presses ‘play’, because there is less de-
mand on the AudioBuffer at time zero. As an example,
in a metronomically exact playback of Fig. [2] an audio file
for rendering pitch B3 in measure 41 is not required until
3.158 SE| Assuming that this audio file can be loaded within
0.5s, say, then during playback we can wait until 2.658 s
(= 3.158 —0.5) to add this file to the buffer queue. A poten-
tial problem with scheduling is that if the connection speed
slows during playback, certain audio files may not load in
time and the song/piece will be rendered inaccurately.

Version 15 of the Tone.js framework [6, 7], built on
the Web Audio API [1], provides a helpful method called
parseScore, which can be used to render note information
that is contained in a JS object using one or more synthe-
sizers or sampled instruments. For example, the following
code could be used to render the excerpt shown in Fig.
with a sampled string instrument:

var str = new Tone.PolySynth(8, Tone.Sampler, {
"AO": "sbank/021.wav", "A#0": "sbank/022.wav",
., "C8": "sbank/108.wav"
}’
{
pitch: 0
}) .toMaster();
Tone.Note.route(

"Str", function(ontime, pitch, dur, vel){
str.triggerAttackRelease(

pitch, dur, ontime, vel

);
}
);

!Counting quarter-note beats from zero at the beginning
of measure 39, B3 appears on beat 8, and at a tempo of
152 BPM, this should sound at 3.158s = 8 - 60/152.

var Score = {

"Str" ¢ [

[0, "E3", .197, .8 1, // 1st note Vc. m.39
[0, "E4", .197, .81, // 1st note Vla

[0, "E4", .197, .8 1, // 1st note Vlin. II
[0, "Gu#a", .444, .81, // Tied note Vln. I
[.197, "E2", .197, .8 1, // 2nd note Vc. m.39

[3.158, "B2", 4.342, .4 1, // Tie Vc. m.41

[7.105, "B3", .395, .4] // Last in Vla. m.43
]
};

Tone.Note.parseScore(Score) ;

The variable str (lines 1-7) defines the sampled string
instrument with reference to a bank of wav files. The call to
route (lines 9-15) provides a handle for triggering notes with
this instrument of specifiable start time, pitch, duration, and
velocity. The Score variable (lines 16-28) is the JS object
that contains these specifications, and finally Score is passed
to parseScore (line 29).

In version r5 of Tone.js, all audio files specified in an
instrument definition (lines 1-7 in the above example) are
added to the buffer queue, even if some of these files are
never used by the Score variable. Using Tone.js as we do
here to define a sample bank, this queue-all approach would
increase load times unnecessarily. In the code supporting our
experiments, we introduce a check for required files and then
refine the instrument definition accordingly. Preliminary in-
vestigations of whether compressed formats (e.g., MP3) with
Tone.js lead to substantially quicker buffer times than un-
compressed formats (e.g., WAV) were inconclusive: there
is a compression/quality payoff to consider, and decompres-
sion of the MP3 (required for subsequent manipulations) can
make total buffer times comparable.

While recognizing the relevance of different file transfer
protocols, pitch shifting, qualitatively different note intensi-
ties, and scheduling, these matters will be put to one side
in what follows, to focus on the effect of a truncated sam-
ple bank on buffer load times. Pitch shifting is possible in
Tone.js (line 6 of the code) but it seems to be applicable to
a whole instrument only — rather than to certain samples
within an instrument — making it unclear if pitch shifting
would lead to efficiency gains for this particular framework.

To our knowledge, little research has been conducted on
using the Web Audio API to load samples for acoustic in-
struments such as violin or piano, nor has it been established
whether empirical analysis of music corpora could result in
reduced load times for such instruments. Therefore, these
topics will be the focus of the experiments described below,
complementing existing knowledge of real-world use of the
Web Audio APL.

3. EXPERIMENTS
3.1 Hypothesis

To motivate our experiments, we began by selecting
twenty movements from the string quartets of Haydn, twenty
mazurkas by Frédéric Chopin (1810-1849), and conducting a
rudimentary analysis of the note durations in each corpus

2The Haydn pieces were op.17 nos.1, 2, 3, 5, 6 and the

[Presto /=152]

39

s o
Vin. 1 o+ o i e s T 3 e s e . —
} { !\ T 7 { .\Ié & v T T T
I o [42 7
p N———
) [—r—
/! 1 PO >y T Il — | T L — | T L n
- 3 ™ - o ¥ o o ol T | — - Il N T T R Il N T T &
Vin. 1T 7% @ el T » e T T T NI D Ty T I @ g+ 8] I T 1
‘kD { % N bl ’ '\ ’ ¥ v ’ .\ é [Ml el ’ = .\
N—
f P
|
’ e] = — s Y o — - o - —
V]d. b /| T T 1 Il Il Il T Py & ¥ T T = & ¥ T T o = r Vi
> — T T] el Il T - T) 1 T | — T I} T
— 1 [— = 4 T
fy\ P
/1 Il Il Py ® o o Py > T T
vC.é‘H&Eﬁ“f'm = e — = e 7
A= I I] i
f P

Figure 2: Excerpt from first movement of String Quartet in E major op.17 no.1 by Joseph Haydn (1732-1809).

The pieces selected cover a range of tempi, from largo or
50 beats per minute (BPM) through to presto or 172 BPM.
Converting the opening tempo instruction and any subse-
quent tempo changes to a BPM value, it was determined
how long in seconds each notated duration would last in
a metronomically exact performance. One vector of these
performed durations was calculated for the Haydn corpus, a
second vector for the Chopin corpus, and these vectors form
the basis of the empirical probability density functions given
in Fig. [} The vertical red line in Fig. [I] indicates the 95th
percentile of the Haydn durations distribution (solid blue
line). That is, 95% of performed durations in the Haydn
corpus last 1.07 s or less. The Chopin durations distribution
(dashed green line in Fig. [1)) is flatter and with a larger mean
than for Haydn, but it too has a 95th percentile of 1.07s.

The above analysis leads to the hypothesis that a play-
back system based on an original sample bank plus a trun-
cated copy (with files truncated to 1.07s to be used whenever
the duration of required notes allows) will have shorter load
times on average than a playback system based only on the
original, long audio files.

Cross-validation is the reason for choosing composers from
different periods and pieces for different instrumental forces:
the first corpus could be used to calculate a duration thresh-
old with which material from the second corpus is rendered,
and vice versa, to avoid training and testing systems on the
same data. As mentioned above, however, the durations
distributions turned out to have the same 95th percentile,
and so we did not pursue a cross-validation approach in this
initial investigation, instead using one threshold of 1.07s.

3.2 Method

The experiments and supporting code are available
from http://tomcollinsresearch.net /research/wac/2016/ for
rerunning and/or download.

3.2.1 Stimuli

In Experiment 1, ten excerpts covering twelve quarter-
note beats were selected at random from each of the twenty
Haydn pieces, giving 200 stimuli in total. Twelve quarter-
note beats was a sensible choice, because with or without
scheduling, it might be necessary to load this amount of
audio at a given time. The excerpts, while from complete
classical pieces, were intended to represent passages of in-
progress compositions in a playback context (i.e. the user

Chopin pieces were opp.17, 24, 30, 33, 41 [10, |5].

has written something and presses ‘play’ to hear the results).

For the purposes of fair comparison and sake of simplic-
ity, the same instrument (a grand piano sound) was used in
each experiment. To create the truncated sample bank, the
original, long samples were imported into a signal processing
program, restricted to 47250 (~ 1.07 - 44100) samples, and
exported with an identifying tag appended to the file name.

3.2.2 Apparatus

A MacBook Pro running Google Chrome on OS X 10.9
with a 2.9 GHz processor and 8 GB RAM was used to browse
the excerpts. The connection speed was 7616 KBits/s at
the experiment’s outset and similar, 7777 KBits/s, at the
experiment’s end. We could have run the experiment on a
local host to remove the influence of connection speed on
load times, but it is a more accurate reflection of real-world
use of the Web Audio API to run it online at a connection
speed typically available from US ISPs. Obtaining the same
overall experimental outcomes several times satisfied us that
connection speed did not constitute a nuisance influence.

3.2.3 Procedure

The excerpts were opened in a browser window one by one,
and the time in seconds that it took to load the audio content
was recorded automatically using a combination of HTML,
JS, and PHP. The next excerpt loaded automatically after
a fixed period of time (1 min), and cached files were cleared
at the end of each experiment.

In Experiment la, Haydn excerpts were loaded using orig-
inal, long audio files. In Experiment 1b, exactly the same
excerpts were loaded but now using the original, long au-
dio files alongside a bank of truncated files. Experiments 2a
and 2b followed the same pattern, the only difference being
Chopin excerpts were loaded instead of Haydn.

3.3 Results

The load times for Experiments 1 and 2 are shown in
Fig. Evidently, the load times for Experiment 1b are
shorter than those for Experiment la (means of 1.72s and
3.87s respectively). In a paired ¢-test, this is a significant
difference (¢(199) = 12.99, p < .001). Also clear is that the
load times for Experiment 2b are shorter than those for Ex-
periment 2a (means of 1.62s and 4.10s respectively). Again
a paired t-test reveals that this is a significant difference
(t(199) = 14.28, p < .001). Outliers in Fig. |3| are due to
excerpts requiring the long version of one or more samples.

Both Experiments 1b and 2b used the original, long audio

http://tomcollinsresearch.net/research/wac/2016/

Load Time (s)
N

N

F

%A[I:::}Agggggﬁﬁ UL B
F

%4[}:::}444444{ P

-
QO

Y
(o

2a 2b
Experiment

Figure 3: Boxplots showing the load-time distribu-
tions for Experiments la (Haydn with original, long
samples), 1b (Haydn with original plus truncated
samples), 2a (Chopin with original, long samples),
and 2b (Chopin with original plus truncated sam-
ples). Red crosses are outlying load times — some not
shown for the sake of clarity (> 8s). Asterisks indi-
cate significant differences between distributions.

files alongside a bank of truncated files, and the results show
that this system reduces load times compared with Experi-
ments la and 2a, respectively, which used the original, long
audio files only. This finding confirms our hypothesis, that
a playback system based on an original sample bank plus a
truncated copy will have shorter load times on average than
a playback system based only on the original, long audio
files. Across experiments, the average load time reduction
was 2.32s, and for the faster system, AudioBuffer load time
for a twelve-beat excerpt took an average 1.67s.

4. DISCUSSION

Via online experiments involving the loading of randomly
selected, twelve-beat excerpts of music, we investigated typ-
ical buffer times of the Tone.js Web Audio framework [6]
7] and, by extension, the Web Audio API [1]. The ex-
periments focused on the playback scenario where a user
needs realistic-sounding acoustic instruments to render an
in-progress song/piece. Using a sample bank with mean
sample duration 8.59 s, average load times were in the region
~4s. With much existing work on Web audio applications
having used synthesizers and short samples (e.g., drums)
[11} 8], this focus on realistic-sounding acoustic instruments
and their load times complements existing knowledge re-
garding real-world use of the Web Audio API. With an av-
erage load time of ~4s for twelve beats’ worth of musical
material, users of browser-based interfaces for music creation
may have to be patient regarding instantaneous and accu-
rate playback with realistic-sounding acoustic instruments.

We proposed and tested a playback system based on a
new method that places a truncated sample bank (sample
duration 1.07s) alongside the original, long samples of an
acoustic instrument, and draws from the truncated bank
whenever the note durations belonging to a music excerpt
allow. The truncation factor of 8 (= 8.59/1.07) was deter-
mined by empirical analysis of durations observed in two

different music corpora. Compared with a baseline system
that used only the original, long samples, our proposed sys-
tem led to more than halving load times, from ~4s to 1.67s.
While there is still work to be done in a Web Audio context
to achieve instantaneous and accurate playback of realistic-
sounding acoustic instruments, this reduction represents a
substantial improvement.

Further work on the influence of pitch shifting and
scheduling will help to determine whether AudioBuffer
times can be reduced further, and whether solutions scale up
successfully to longer excerpts and whole songs/pieces. More
nuanced empirical analyses could also be conducted, for in-
stance taking into account the use of playing techniques such
as pedaling, and/or exploiting findings that lower pitches
tend to have longer durations and higher pitches shorter
durations [4] to create a tiered bank of truncated samples,
rather than truncating all samples to one fixed duration ir-
respective of pitch.

5. ACKNOWLEDGMENTS

We would like to thank three anonymous reviewers for
helpful comments on an earlier version of this paper.

6. REFERENCES

[1] P. Adenot and C. Wilson. Web Audio API GitHub
repository.
https://webaudio.github.io/web-audio-api/.
Retrieved August 5, 2015.

[2] Apple Inc. Logic Pro.
http://wuw.apple.com/logic-pro/. Retrieved
October 1, 2015.

[3] J. Berkovitz. Noteflight: a Web-standards-based
compositional community. In Proceedings of the Web
Audio Conference, January 2015.

[4] Y. Broze and D. Huron. Does higher music tend to
move faster? Evidence for a pitch-speed relationship.
In Proceedings of the International Conference on
Music Perception and Cognition, pages 159-165, July
2012.

[5] Center for Computer Assisted Research in the
Humanities. Kern Scores. http://kern.ccarh.org/.
Retrieved July 1, 2015.

[6] Y. Mann. Tone.js GitHub repository.
https://github.com/Tonejs/Tone. js. Retrieved
August 5, 2015.

[7] Y. Mann. Interactive music with Tone.js. In
Proceedings of the Web Audio Conference, January
2015.

[8] J. Monschke. Web Audio Editor.
http://web-audio-editor.herokuapp.com/.
Retrieved September 17, 2015.

[9] J. Monschke. Building a collaborative music
production environment using emerging Web
standards. Master’s thesis, Hochschule fiir Technik
und Wirtschaft Berlin, Germany, 2014.

[10] C. S. Sapp. Online database of scores in the Humdrum
file format. In Proceedings of the International Society
for Music Information Retrieval Conference, pages
664-665, September 2005.

[11] A. Vé#ndnen. AudioSauna.
http://www.audiosauna.com/. Retrieved August 10,
2015.

https://webaudio.github.io/web-audio-api/
http://www.apple.com/logic-pro/
http://kern.ccarh.org/
https://github.com/Tonejs/Tone.js
http://web-audio-editor.herokuapp.com/
http://www.audiosauna.com/

	Introduction
	Existing Approaches
	Experiments
	Hypothesis
	Method
	Stimuli
	Apparatus
	Procedure

	Results

	Discussion
	Acknowledgments
	References

