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Full title: Developing and evaluating computational models of musical style

Abstract: Stylistic composition is a creative musical activity, in which students as well as renowned

composers write according to the style of another composer or period. We describe and evaluate two

computational models of stylistic composition, called Racchman-Oct2010 and Racchmaninof-Oct2010.

The former is a constrained Markov model and the latter embeds this model in an analogy-based design

system. Racchmaninof-Oct2010 applies a pattern discovery algorithm called SIACT and a perceptually

validated formula for rating pattern importance, to guide the generation of a new target design from an

existing source design. A listening study is reported concerning human judgments of music excerpts that

are, to varying degrees, in the style of mazurkas by Frédédric Chopin (1810-1849). The listening study acts

as an evaluation of the two computational models and a third, benchmark system called Experiments in

Musical Intelligence (EMI). Judges’ responses indicate that some aspects of musical style, such as phrasing

and rhythm, are being modeled effectively by our algorithms. Judgments are also used to identify areas

for future improvements. We discuss the broader implications of this work for the fields of engineering

and design, where there is potential to make use of our models of hierarchical repetitive structure. Data

and code to accompany this paper are available from www.tomcollinsresearch.net

Key words: musical creativity, computational model, stylistic composition.
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1 Introduction

Design activities, of which music composition is one example, can be categorised as either routine or

nonroutine (Gero and Maher, 1993). Routine design activities are ones in which the ‘functions (i.e.,

goals or requirements) are known as are the available structures and the processes which map function

to structure’ (Gero and Maher, 1993, p. v), whereas in nonroutine design activities, there is incomplete

knowledge regarding one or more of function, structure, or mapping. According to Gero and Maher (1993),

artificial intelligence has generally been concerned with addressing routine design activities, whereas the

field of computational creativity has emerged more recently, out of a need to study nonroutine design

activities. These sentiments are echoed by an observation that although artificial intelligence algorithms

‘are able to produce remarkable results (Spector, 2008), it appears unlikely they will tell us much about

creativity’ (Brown, 2013, p. 52).

The topic of this article—generation of music in the style of an existing corpus—falls under the heading

of a nonroutine design activity, and within the remit of computational creativity, because the functions

(requirements or goals) involved in generating a stylistically successful passage of music are difficult to

specify, as are the processes mapping function to structure. Our structure here will be musical notes, or

more precisely, triples consisting of: (1) when a note (sound) begins; (2) at what pitch height; and (3) for

what duration.

The computational system towards which the current paper drives is called Racchmaninof (an acronym

to be unpacked in due course). At a high level, Racchmaninof can be described as a within-domain

analogy-based design system (Vattam et al., 2008; Goel et al., 2009). It consists of a target design (the

new passage of music to be generated) and a source design (an excerpt of human-composed music in the

intended style). The large-scale structure of the source design (e.g., bars 1-4 repeat at 13-16, and bars

3-4 occur transposed at 5-6 also) ‘establishes a platform for the exploration of a new solution’ (Qian and

Gero, 1996, p. 289). Attention to large-scale repetitive structure is the most important contribution of

the current work, because ‘[i]n music, what happens in measure 5 may directly influence what happens

in measure 55, without necessarily affecting any of the intervening material’ (Cope, 2005, p. 98). While

acknowledging the existence of large-scale temporal dependencies in music, almost all current approaches

to music generation are focused on small-scale relationships, such as how to get from one melody note or

chord to the next, or how to create a sense of local phrasing (exceptions are Cope, 2005; Shan and Chiu,

2010).
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As well as our balancing of small- and large-scale concerns when generating new designs, those working

in the wider field of engineering design might also be interested in how we (1) achieve plausible small-scale

relationships between musical events, and (2) evaluate our systems.

1. Plausible small-scale relationships are achieved by a constrained Markov model calculated over a

database of pieces in the intended style. Checks concerning the range (is it too high or too low?),

likelihood (will a generated event sound too surprising or too quotidian in the current context?),

and sources (have too many consecutive events been sampled from the same database piece?) act as

critics, recognising potential mistakes and controlling the number of candidate passages generated

(Brown, 2013; Minsky, 2006; Thurston, 1991);

2. Final evaluation of our systems’ designs consists of a listening study that uses Amabile’s (1996)

Consensual Assessment Technique (CAT), adapted to assessment of music-stylistic success. There

are a number of alternatives for evaluating the extent to which a system is creative (Besemer,

2006; Boden, 2004; Nelson and Yen, 2009; Ritchie, 2007; Shah et al., 2003; Wiggins, 2006), but

we favoured Amabile’s (1996) CAT for its similarity to how a student-composed passage of music

would be assessed by an expert, and because it enables us to regress stylistic success ratings on

quantitative properties of our systems’ designs in order to generate some suggestions for musical

aspects requiring attention in future work (see also Pearce and Wiggins, 2007).

The focus moves now from setting the current work in the context of computational design creativity,

to an early but highly illustrative example of modelling musical style. The model appeared in the

Age of Reason (c 1650-1800), a period of flourishing scientific investigation. The musical dice game or

Musikalisches Würfespiel has been peddled as an example many times (Schwanauer and Levitt, 1993;

Cope, 1996; Nierhaus, 2009), despite its attribution to Wolfgang Amadeus Mozart (1756-1791) being most

likely false (Hedges, 1978). We use the example again, however, as its principles underpin several more

recent models of musical style that will be reviewed and developed below. Segments from a simplified

version of the game attributed to Mozart are shown in Figure 1. To generate the first bar of a new waltz,

the game’s player rolls a die. The segment in Figure 1 with label vm,1, corresponding to the observed roll

1 ≤ m ≤ 6, becomes the first bar of the new waltz. To generate the second bar, the player rolls the die

again, observes the outcome 1 ≤ m′ ≤ 6, and the corresponding segment vm′,2 from Figure 1 becomes

the second bar of the new waltz. The process continues until eight bars have been generated. The dice

game can be represented as a graph, shown in Figure 2. Each vertex represents a segment of music, and

an arc from vertex vi,j to vk,l indicates that segment vi,j can be followed by vk,l when the dice game is
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played. A walk from left to right in Figure 2 corresponds to an outcome of the dice game. One possible

outcome is shown in black.
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Figure 1: Bar-length segments of music adapted from a musical dice game attributed to Mozart, k294d. In
the original game, the segments are arranged in a different order, so that the equivalent harmonic function of
segments in the same column and equality of segments in the eighth column are disguised.

As we move on to more recent models of musical style, two relevant aspects of the dice game are

database construction (compiling the segments and graph) and generating mechanism (rolling of the die).

In some models below, existing music is segmented to form a database. The segments may vary in

size (beat, sub-beat) and texture (monophonic, polyphonic), but the principle is the same.1 In the dice

game, database construction was done by hand, but in recent models it is totally or partially algorithmic,

and also determines which segments can be recombined with which. In the dice game, the generating
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Figure 2: A graph with vertices that represent bar-length segments of music from Figure 1. An arc from vertex
vi,j to vk,l indicates that segment vi,j can be followed by vk,l when the dice game is played. A walk from left
to right is shown in black, corresponding to one possible outcome of the dice game.

mechanism is random but algorithmic, and this also tends to be the case for recent models, which use

pseudo-random numbers to make choices between alternative musical continuations.

In the spirit of the Age of Reason, our aim in this paper is to take a more rigorous and scientific

approach to modelling of music style than has been adopted previously. We will describe and evaluate two

new computational models of musical style (Racchman-Oct2010 and Racchmaninof-Oct2010, acronyms

explained in due course), with the objective of determining how close an algorithm can get to EMI’s (Cope,

1996, 2001, 2005) standard based on available explanations and code. A description of the new algorithms

is offered here, with full details and more discussion available in Collins (2011). The source code for the

algorithms has also been made freely available via www.tomcollinsresearch.net, to encourage researchers

to engage in the challenging and open problem of modelling musical style. The review (Section 2) begins

with example briefs in stylistic composition, leading to a discussion of existing algorithmic approaches. For

the new models developed in Section 3, we select and discuss the brief of composing the opening section of

a mazurka in the style of Chopin. An evaluation of the models is reported in Section 4, using an adapted

version of the Consensual Assessment Technique (CAT, Amabile, 1996; Pearce and Wiggins, 2001, 2007).

Judges listened to music excerpts (including genuine Chopin mazurkas and computer-generated passages

from Racchman-Oct2010, Racchmaninof-Oct2010, and EMI), gave ratings of stylistic success on a scale

1-7, and placed each excerpt in one of three categories (Chopin mazurka, human-composed but not a

Chopin mazurka, computer-based). The evaluation sheds light on the creativity of our models, in the

sense of behaviour ‘which would be deemed creative if exhibited by humans’ (Wiggins, 2006, p. 451).
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2 Review of computational models of musical style

To help frame the review of existing algorithms for stylistic composition, at the outset we state four

important, recurring issues:

1. Avoidance of replication. Is the model’s output ever too similar to works from the intended

style? Does the model include any steps to avoid replicating substantial parts of existing work?

2. Database construction. How are the stylistic aim and corpus of music selected (for instance,

Classical string quartets, Chopin mazurkas)? If the model is database-driven, are both database

construction and generating mechanism algorithmic, or is only the generating mechanism algorith-

mic?

3. Level of disclosure. To what extent is it possible to reproduce somebody else’s model, either

based on their description or published source code?

4. Rigour and extent of evaluation. How has the computational model of musical style been

evaluated? For which different corpora (different composers, periods, compositional strategies) has

the model been evaluated?

Algorithmic composition is a field of great variety and antiquity, which is perhaps unsurprising given the

broadness of the terms ‘algorithm’ and ‘composition’. Some aspects of composition that can be described

as a process are eminently suited to being turned into algorithms. In a recent summary of algorithmic

composition organised by algorithm class, Nierhaus (2009) gives examples ranging from hidden Markov

models (Allan, 2002) to genetic algorithms (Gartland-Jones and Copley, 2003). His introductory historical

overview credits Guido of Arezzo (c 991-1033) with devising the first system for algorithmic composition

(see also the recent review of Fernández and Vico, 2013).

This paper focuses on algorithms for stylistic composition (or pastiche), that is, works in the style of

another composer or period. Free composition, on the other hand, is something of a catchall term for

any work that is not a pastiche. Reich (2001) suggests for instance that Clara Schuman’s [née Wieck]

(1819-1896) Mazurka in G minor from Soirées musicales op.6 no.3 is a stylistic composition, inspired

by Chopin’s mazurkas. Clara Schumann was among the first pianists to perform the mazurkas, which

began to appear a decade before Soirées musicales was published. The mazurka is a ‘Polish folk dance

from the Mazovia region [where Chopin spent his childhood]. . . . In his [fifty plus] examples the dance

became a highly stylized piece for the fashionable salon of the 19th century’ (Downes, 2001, p. 189). As
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an example of a free composition, we might cite ‘Moro, lasso’ from Madrigals book 6 by Carlo Gesualdo

(c 1561-1613). The opening chord sequence (C] major, A minor, B major, G major) is so distinctive

that it would be surprising to find instances of other composers using this sequence in the next three

hundred or so years. Distinctiveness then, formalised to a degree by Conklin (2010), ought to be added

to the definition of free composition. Often the line separating stylistic composition (or pastiche) and free

composition is blurred. A more credible stance is that most pieces are neither entirely free nor entirely

stylistic, but somewhere in between. At the former extreme, a work is so highly original and lacking

in references to existing work that listeners remain perplexed, long after the premiere. At the latter

extreme, a piece that is entirely stylistic merely replicates existing work, perhaps even note for note.

Some example briefs within stylistic composition are listed in Table 1. These briefs are in the order of

most (1) to least (6) constrained. In chorale harmonisation, a relatively large number of conditions help

the composer respond to the brief: the soprano part is already written, and the number of remaining parts

to be composed is specified. A composer who only wrote one note per part per beat might do well enough

to pass an exam on chorale harmonisation. This task is the most studied by far in music computing, and

it is also one of the most straightforward. An important contribution of this paper is to highlight some

alternative briefs from undergraduate and A-level music courses, and to develop algorithms for one of the

least constrained tasks.

The briefs of ground bass and fugal exposition involve different compositional strategies, compared

to each other and chorale harmonisation. For example, in harmonising the soprano part of a chorale,

the concern for harmony (the identity of vertical sonorities) dominates the concern for counterpoint

(the combination of independent melodic voices). Inherent in the name ‘ground bass’ is a different

compositional strategy of beginning with the bass (bottom) part, and supplying the upper parts. We

are not aware of any existing systems for automated generation of material on a ground bass. Although

a system proposed by Eigenfeldt and Pasquier (2010) does allow the user to specify a bass line, it is

not intended to model a particular musical style. In ground bass and fugal exposition, the concern for

counterpoint dominates the concern for harmony. A system for generating fugal expositions is outlined

by Craft and Cross (2003), and the selected output of a second system is available (Cope, 2002). Stylistic

composition briefs such as the Classical string quartet or Romantic song cycle are relatively unconstrained.

Hopefully, a composer responding to the brief of the Classical string quartet will produce material that is

stylistically similar to the quartets of Haydn or Mozart, say, but there would appear to be less guidance

in terms of provided parts or explicit rules.
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Table 1: Six briefs in stylistic composition. For musical examples please see Collins (2011), Section 5.2.

Task Name Example Composition Composition Brief Syllabus or Source

1. Chorale harmon-
isation

‘Herzlich lieb hab ich dich,
o Herr’, as harmonised
(r107, bwv245.40) by
Johann Sebastian Bach
(1685-1750)

Add alto, tenor, and bass
parts to a given soprano part.

AQA (2009, p. 3)

2. Ground bass Ground in G minor by
Gottfried Finger (1600-
1730)

Add six four-part variations
for string/wind ensemble to a
given baseline.

Cambridge Uni-
versity Faculty
of Music (2010b,
p. 10)

3. Fugal exposition Fugue in C] minor
bwv848 by J. S. Bach

Compose a four-part
fugal exposition for
strings/keyboard on a
given subject.

Cambridge Uni-
versity Faculty
of Music (2010b,
p. 8)

4. Classical string
quartet

Second movement of the
String Quartet in F mi-
nor op.20 no.5 by Joseph
Haydn (1731-1809)

Complete a movement of a
string quartet (∼ 40 bars),
demonstrating development
of thematic ideas, modula-
tion, and variety in texture.

AQA (2007, p. 21)

5. Chopin mazurka
opening section

Mazurka in G minor op.67
no.2 by Chopin

Compose the opening section
(∼ sixteen bars) of a mazurka
in the style of Chopin

Cope (1997b)

6. Advanced tonal
composition

Submit a four-movement instrumental work or an extended
song cycle lasting 35-40 minutes. E.g., piano sonata, sonata
for melody instrument and piano, song cycle for voice and
piano, piano trio, string quartet, clarinet quintet, wind
quintet. The idiom should be appropriate to a period and
place in Europe 1820-1900.

Cambridge Uni-
versity Faculty
of Music (2010a,
pp. 25-26)

For the sake of completeness, and without further explanation, some tasks that might be classed as free

composition are: a soundtrack to accompany a promotional video for a low-cost airline (Edexcel, 2009,

p. 4); a competition test piece exploiting a melody instrument’s playing techniques (Edexcel, 2009, p. 3);

a portfolio of free compositions, in which candidates are encouraged ‘to develop the ability to compose

in a manner and style of their own choice’ (Cambridge University Faculty of Music, 2010a, p. 26).

Sections 3 and 4 of this paper are concerned with the fifth stylistic composition brief in Table 1 (Chopin

mazurka). The larger hypothesis, of which this compositional brief is one test, concerns whether random

generation Markov chains (RGMC) can be applied successfully to music from multiple composers/periods.

Therefore, it does not make sense to go into detail about the mazurka style (or to try to encode this

knowledge), although detailed accounts of mazurkas are available (Rosen, 1995; Rink, 1992). We chose

Chopin’s mazurkas as a corpus because there are enough pieces (∼ 50) to display characteristic features

in the frequency required to build a representative database. They also provide the opportunity for

comparison with EMI’s mazurkas (Cope, 1997a).
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2.1 Existing algorithms for stylistic composition

Allan (2002) uses hidden Markov models (HMM) to harmonise chorale melodies (for a general guide

to HMMs, please see Rabiner, 1989). Treating a chorale melody as the observed sequence, the Viterbi

algorithm is used to determine which hidden sequence of harmonic symbols is most likely to underlie this

melody. The information about melody notes and harmonic symbols (initial distribution, transition and

emission probabilities) is determined empirically by analysing other chorales, referred to as the training

set. In a second HMM, ‘the harmonic symbols decided by the previous subtask [were] treated as an

observation sequence, and [used to] generate chords as a sequence of hidden states. This model [aimed]

to ‘recover’ the fully filled-out chords for which the harmonic symbols are a shorthand’ (Allan, 2002, p. 45).

A final step introduces decoration (e.g., passing notes) to what would otherwise be a one-note-per-voice-

per-beat harmonisation. HMMs are appropriate for tasks within stylistic composition if an entire part is

provided (such as the soprano part in a chorale harmonisation), which is then used to generate hidden

states such as harmonic symbols. If a melody or some other part is not provided, however, then Markov

models of the non-hidden variety are more appropriate.

A Markov model consists of a state space (e.g., the set of pitch classes), a transition matrix describing

the probability that one state is followed by another (in our example, the probability that pitch class X

is followed by pitch class Y ), and an initial distribution for generating the first state. The use of Markov

models in music computing is well established: the Musikalisches Würfespiel from the introduction can be

described as a Markov model with bar-length states and uniform transition matrix and initial distribution,

Hiller and Isaacson (1959) repopularised the use, Ames (1989) gives an overview, Cope’s (1996; 2005,

p. 89) method for chorale harmonisation is akin to a Markov model with extra features, Ponsford et al.

(1999) use n-gram models (similar to Markov models) to imitate the harmonic style of seventeenth-

century dance forms, and the use of Markov models for music generation has continued throughout the

last decade (e.g., Pachet, 2002; Roy and Pachet, 2013).

n-gram models also underpin Conklin and Witten’s (1995) SONG/3 (Stochastically Oriented Note

Generator), a system that can be used to predict attributes of the next note in a composition based

on contextual information. Prediction may seem unrelated to algorithmic composition at first glance,

but Conklin and Witten (1995) conclude with an application to composition, and this paper forms the

theoretical framework for much subsequent research (Conklin, 2003; Pearce, 2005; Pearce and Wiggins,

2007; Whorley et al., 2010). An example input to SONG/3 might consist of (1) a chorale melody in G

minor, say, up to and including a B[4 in bar 3, (2) a collection of other chorale melodies, (3) an attribute
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that the user is interested in predicting, such as duration. Given this input, the output of SONG/3 would

be a prediction for the duration of the note following the aforementioned B[4. This prediction and the

input (1)-(3) can be used to elicit successive predictions from SONG/3 if desired. Systems A-D described

by Pearce (2005) have the same framework for calculating probability distributions as SONG/3, but

use the Metropolis-Hastings algorithm to generate melodies, as suggested by Conklin (2003). Instead of

generating pitches successively (Conklin and Witten, 1995), the Metropolis-Hastings algorithm alters an

existing melody one randomly-selected note at a time. It could be argued, therefore, that this method is

more appropriate for generating a variation on a theme, than for generating a new melody.

Although Cope (1996, 2001, 2005) has not published details of EMI to the extent that some would

like (Pearce et al., 2002; Wiggins, 2008; Pedersen, 2008), he has proposed key ideas that have influenced

several threads of research based on EMI. A summary of the databases and programs referred to col-

lectively as EMI is given by Hofstadter (writing in Cope 2001, pp. 44-51), who identifies recombinancy

(segmenting and re-assembling existing pieces of music) as the main underlying principle, as well as four

related principles: syntactic meshing, semantic meshing, signatures, and templagiarism. Each of the four

principles are addressed in Collins (2011), Section 5.6, but we mention just a few points here. The prin-

ciple of recombinancy is a starting point for our systems, and we adhere reasonably closely to available

descriptions of syntactic meshing and templagiarism. Our systems should not be seen as an ‘open-source

EMI’, however, as we do not attempt to implement descriptions of semantic meshing or signatures.

EMI uses statement, preparation, extension, antecedent, and consequent (SPEAC) analysis (Cope, 2005,

pp. 221-243), to try to ensure that recombined music does not contain semantic violations. Inspired by

the work of Schenker (1935/1979), SPEAC analysis begins by selecting a so-called framework piece (or

excerpt thereof). Each beat is given a label (‘S’, ‘P’, ‘E’, ‘A’, or ‘C’) and then these are combined to form

labels at successively higher levels, corresponding roughly to bar, phrase, section, until a whole piece (or

excerpt) is represented by a single letter. Recombined music, selected from a database that has also been

SPEAC-analysed, must conform to the framework labels as closely as possible. A particularly important

question is whether the piece being used as a framework is omitted from the database. Suppose the

corpus comprises four Chopin mazurkas, op.68 nos.1-4, and one piece, op.68 no.4, is to be used as a

framework. Is the database stipulating which segments can follow which constructed over all four pieces,

or just op.68 nos.1-3? If the framework piece is not omitted, then the likelihood that the generated

passage replicates the framework piece note for note is increased. An example is given in Figures 3A

and 3B. The black noteheads in these figures indicate pairs of ontimes and MIDI note numbers (MNN)

that the EMI mazurka and Chopin mazurka have in common. Furthermore, bars 25-26 of Figure 3A
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are an exact copy of bars 41-42 of the Mazurka in F minor op.7 no.3 by Chopin. Existing essays on

EMI (contributors to Cope 2001) are of a general nature and claim—rather than demonstrate—deep

engagement with EMI’s output and corresponding original corpus: ‘I know all of the Chopin mazurkas

well, and yet in many cases, I cannot pinpoint where the fragments of Emmy’s mazurkas are coming

from. It is too blurry, because the breakdown is too fine to allow easy traceability’ (Hofstadter writing

in Cope 2001, pp. 297-298).

Templagiarism is a term coined by Hofstadter (writing in Cope 2001, p. 49), to describe borrowing from

an existing piece/excerpt on an abstract or template level. Suppose that in the piece selected for use as

a framework, bars 1-4 repeat at bars 9-12, and again at bars 63-66. There may be further elements of

repetition in the framework piece (including transposed or inexact repetition of bars 1-4, and repetition

of other motives), but for the sake of simplicity, focus is restricted to bars 1-4, labelled A1, and the two

subsequent occurrences of A1, labelled A2 and A3 respectively. The positions (but not the actual notes)

of these occurrences, in terms of temporal and pitch displacement relative to the first note of A1, are

recorded and used to guide EMI’s generating mechanism. For instance, material is generated for bars 1-4

first, and then ‘copied and pasted’ to bars 9-12, and bars 63-66. Now material for intervening bars, bars

5-8 and 13-62, is generated, as well as for bar 67 to the end of the framework piece. Thus, the generated

passage contains a collection of notes in bars 1-4, which we label B1, and this collection repeats at bars

9-12 (label B2) and 63-66 (label B3). The collections A1 and B1 may not share a note in common,

but on the more abstract level of relative temporal and pitch displacement, the sets {A1, A2, A3} and

{B1, B2, B3} are equivalent (see also Czerny, 1848).
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‘In order to quote the template, you need to supplement it with a new “low-level” ingredient—a new

motive—and so the quotation, though exact on the template level, sounds truly novel on the note level,

even if one is intimately familiar with the input piece from which the template was drawn’ (Hofstadter

writing in Cope 2001, p. 50). An explanation of templagiarism is conspicuous by its absence in Cope

(1996, 2001, 2005), although there are passing references (Cope 2001, p. 175; Cope 2005, p. 245). With

only Hofstadter’s description (cited above) on which to rely, our own explanation may be inaccurate.

While critical of the type of borrowing shown between Figures 3A and 3B, we see templagiarism as an

important component of stylistic composition. The caveats are that a slightly more flexible approach

would be preferable (e.g., do the temporal and pitch displacements retained have to be exact?), that

borrowed patterns ought to be over one bar, say, in duration, and that the framework piece ought to be

omitted from the database to reduce the probability of note-for-note replication.

In summary, Cope’s (1996; 2005) work on EMI represents the most ambitious and, in our opinion, most

successful attempt to model musical style. It is not presented in sufficient detail to replicate, however,

nor has it been evaluated rigorously in listening experiments—the latter criticism applies equally to the

other research reviewed above, with the exception of Pearce (2005). While the above criticisms remain

valid, we see the successful modelling of musical style as an open, unsolved, scientific problem.

Markov-type models are the focus of the above review, in part because existing algorithms with the

goal of pastiche often adopt this approach. Alternative computational approaches to stylistic composition

exist, however. Ebcioǧlu (1994) describes a system called CHORAL for the task of chorale harmonisation.

A logic programming language called Backtracking Specification Language (BSL) is used to encode some

350 musical ‘rules’ that the author and other theorists observe in J. S. Bach’s chorale harmonisations, for

example ‘rules that enumerate the possible ways of modulating to a new key, the constraints about the

preparation and resolution of a seventh in a seventh chord,. . . . a constraint about consecutive octaves and

fifths’ (Ebcioǧlu, 1994, pp. 310-311). Like the HMM of Allan (2002), there are separate chord-skeleton

and chord-filling steps. Unlike the HMM of Allan (2002), which consists of probability distributions

learnt from a training set of chorale harmonisations, CHORAL is based on the programmer’s hand-coded

rules. While use of hand-coded rules persists (Phon-Amnuaisuk et al., 2006; Anders and Miranda, 2010),

we suggest that reliance on music theorists’ observations is not ideal, as the quality and quantity of

observations varies across composers and periods. With Markov-type models, however, the same training

process has the potential to generalise to music databases from different composers/periods.
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3 Two new Markov models of stylistic composition

This section develops two models for stylistic composition, Racchman-Oct2010 and Racchmaninof-Oct2010.

In the former model, repetitive structure can only occur by chance, but the latter model incorporates the

results of a pattern discovery algorithm called Structure Induction Algorithm and Compactness Trawler

(Collins et al., 2010; Meredith et al., 2002), thus ensuring that generated passages contain certain types

of repeated pattern. The development of the models addresses general issues in stylistic composition,

such as how to generate a passage without replicating too much of an existing piece.

3.1 Definition and example of a Markov model for melody

As a first example, pitch classes could form the state space of the Markov chain, while the relative

frequencies with which one pitch class leads to the following pitch class could form the matrix of transition

probabilities. We will illustrate this using the melody in Figure 4. The piece of music contains all of the

natural pitch classes as well as B[, so the obvious choice for the state space (I) is the set of pitch classes

I = {F,G,A,B[,B,C,D,E}. (1)

To obtain the transition matrix, for each i, j in I we count the number of transitions from i to j in

Figure 4 and record this number, divided by the total number of transitions from state i. The resulting

transition matrix is



F G A B[ B C D E

F 0 3/4 1/4 0 0 0 0 0

G 2/7 0 4/7 1/7 0 0 0 0

A 1/8 1/2 0 0 1/4 1/8 0 0

B[ 0 0 2/3 1/3 0 0 0 0

B 0 1/3 0 0 0 1/3 1/3 0

C 0 0 1/3 1/3 0 0 1/3 0

D 0 0 0 0 0 1/2 0 1/2

E 0 0 0 0 1 0 0 0


= P. (2)

For example, there are four transitions from F: three are to G and one to A. As F is the first element

of the state space this gives the first row of the table: for F to G the probability is 3
4 , for F to A it is 1

4 ,

and 0 otherwise. Transitions from each pitch class are recorded in subsequent rows of the table.2 It can

be seen that most transitions are from one pitch class to an adjacent one.
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Figure 4: Bars 3-10 of the melody from ‘Lydia’ op.4 no.2 by Gabriel Fauré (1845-1924).

An initial state is required to use this matrix to generate a melody. For instance

a = ( 1
2 , 0,

1
2 , 0, 0, 0, 0, 0) (3)

means that the initial pitch-class of a generated melody will be F with probability 1/2, and A with

probability 1/2. (These probabilities need not be drawn empirically from the data, though often they

are.) We use upper-case notation (Xn)n≥0 = X0, X1, . . . for a sequence of random variables, and lower-

case notation (in)n≥0 to denote values taken by the variables. Suppose i0 = A, then we look along the

third row of P (as A is the third element of the state space) and randomly choose between X1 = F,

X1 = G, X1 = B, X1 = C, with respective probabilities 1
8 , 1

2 , 1
4 , 1

8 . And so on. Below are two pitch

sequences generated from the Markov model using random numbers (we have imposed the same number

of notes and phrase lengths as in Figure 4).

A,G,F,G,F,G,A,B,G, F,G,F,G,A,B,D,E,

B,C,A,F,G, B[,A,F,G,A,G,A,B,G,A.

(4)

A,G,A,B,D,C,B[,A,F, G,F,A,B,D,C,A,G,

A,G,F,A,F, A,F,G,F,G,A,G,F,A,G.

(5)

Here are formal definitions of a Markov model and Markov chain (Norris, 1997).

Definition 1. Markov model. A Markov model of a piece (possibly many pieces) of music consists of:

1. A countable set I called the state space, with a well-defined, onto mapping from the score of the

piece to elements of I.

2. A transition matrix P such that for i, j ∈ I, pi,j is the number of transitions in the music from i to

j, divided by the total number of transitions from state i.
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3. An initial distribution a = (ai : i ∈ I), enabling the generation of an initial state.

Definition 2. Markov chain. Let (Xn)n≥0 be a sequence of random variables, and I, P, a be as in

Definition 1. Then (Xn)n≥0 is a Markov chain if

(i) a is the distribution of X0;

(ii) for n ≥ 0, given Xn = i, Xn+1 is independent of X0, X1, . . . , Xn−1, with distribution (pi,j : j ∈ I).

Writing these conditions as equations, for n ≥ 0 and i0, i1, . . . in+1 ∈ I,

(i) P(X0 = i0) = ai0 ;

(ii) P(Xn+1 = in+1 | X0 = i0, X1 = i1, . . . , Xn = in) = P(Xn+1 = in+1 | Xn = in) = pin,in+1
.

Conditions (i) and (ii) apply to finite sequence of random variables as well. It is also possible to model

dependence in the opposite direction. That is, for n ≥ 1, given Xn = i, Xn−1 is independent of

Xn+1, Xn+2, . . ..

Definition 3. Realisation. Sometimes the output generated by formation of a Markov model does

not consist of ontime-pitch-duration triples, which might be considered the bare minimum for having

generated a passage of music. The term realisation refers to the process of converting output that lacks

one or more of the dimensions of ontime, pitch, duration, into ontime-pitch-duration triples.

Loy (2005) discusses higher-order Markov chains in the context of monophonic music, which take into

account more temporal context. In a 2nd-order Markov chain, given Xn = in and Xn−1 = in−1, Xn+1 is

independent of X0, X1, . . . , Xn−2. The disadvantage of more temporal context is an increased probability

of replicating original material (Loy, 2005).

3.2 A beat/spacing state space

The previous section was limited to consideration of melody—useful for exemplifying the definitions

of Markov model, Markov chain, and the concept of realisation, but monophony constitutes a very

small proportion of textures in Western classical music. That is not to say models for generation of

melodies contribute little to an understanding of musical style. Since a common compositional strategy

is to begin by composing a melody (followed by harmonic or contrapuntal development), models that
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generate stylistically successful melodies are useful for modelling the first step of this particular strategy.

Our proposed model assumes a different compositional strategy; one that begins with the full texture,

predominantly harmonic (or vertical) but with scope for generated passages to contain contrapuntal (or

horizontal) elements.

Figure 5 will be used to demonstrate the state space of our proposed Markov model. A state in the

state space consists of two elements: the beat of the bar on which a particular minimal segment begins;

and the spacing in semitone intervals of the sounding set of pitches.

Definition 4. Partition point and minimal segment (Pardo and Birmingham, 2002, pp. 28-

9). A partition point occurs where the set of pitches currently sounding in the music changes due to the

ontime or offtime of one or more notes. A minimal segment is the set of notes that sound between two

consecutive partition points.

The partition points for the excerpt from Figure 5 are shown beneath the stave. The units are crotchet

beats, starting from zero. So the first partition point is t0 = 0, the second is t1 = 3, and the third is

t2 = 4, coinciding with the beginning of bar 2, and so on. The first minimal segment S0 consists of the

notes sounding in the top-left box in Figure 5. Representing these notes as ontime-pitch-duration triples,

we have

S0 = {(0,F3, 3), (0,A3, 3), (0,C4, 3), (0,F4, 3)}. (6)

The second minimal segment

S1 = {(3,D3, 1), (3,F3, 1), (3,D4, 1), (3,F4, 1)}, (7)

and so on. Conventionally, beats of the bar are counted from one, not zero. So the first minimal segment

S0 has ontime 0, and begins on beat 1 of the bar. The next segment S1 begins on beat 4.

The second element of a state—the chord expressed as a set of intervals above its bass note—is consid-

ered now. Each pitch s in a sounding set of pitches S can be mapped to a MNN y.

Definition 5. Semitone spacing. Let y1 < y2 < · · · < ym be MNNs. The spacing in semitone intervals

is the vector (y2− y1, y3− y2, . . . , ym− ym−1). For m = 1, the spacing of the chord is the empty set. For

m = 0, a symbol for ‘rest’ is used.

The first minimal segment S0 contains the pitches F3, A3, C4, F4, mapping to MNNs 53, 57, 60, 65,

and a semitone spacing of (4, 3, 5). The next segment S1 has spacing (3, 9, 3), and so on.
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Figure 5: Bars 1-13 (without lyrics) of ‘If ye love me’ by Thomas Tallis (c 1505-1585), annotated with partition
points and minimal segments (cf. Definition 4). The partition points are shown beneath the stave. The units
are crotchet beats, starting from zero.

Definition 6. Beat/spacing state space. Let I denote a state space where each state is a pair: the

first element of the pair is the beat of the bar on which a minimal segment begins (cf. Definition 4); the

second element of the pair is the semitone spacing of that minimal segment (cf. Definition 5).

If we construct a Markov model over the excerpt in Figure 5, using the beat/spacing state space I,

then the first state encountered is

i =
(
1, (4, 3, 5)

)
. (8)

Is the inclusion of beat of the bar in the state space justified? When Tallis was writing, for instance,

barlines were not in widespread use. Still the piece has a metric hierarchy, and points of arrival, such

as the last beat of bar 12 into bar 13, coincide with strong pulses in the hierarchy. As an example, the

chord F3, C4, F4, A4 occurs in bar 2 and again in bar 3, with the first occurrence on beat 3 of the bar,

and the second on beat 2. Being relatively strong and weak beats respectively, this is likely to influence

what happens next, so representing the two occurrences as different states is justified (Huron, 2006).
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3.3 Details of musical context to be retained

When analysing transitions between states, we retain information about the musical context of the

transitions, to help with realisation (cf. Definition 3). It is more convenient to store this information in

a transition list L than in a transition matrix P (2), although sampling uniformly from L is equivalent

to sampling from P . The transition list, containing all instances of transitions, is similar to what Cope

(1996, 2005) calls a lexicon, but below we give a more explicit description of the information stored and

how it is utilised. In general, for a state space I with n elements, the form of the transition list is

L =
((
i1, (j1,1, c1,1), (j1,2, c1,2), . . . , (j1,l1 , c1,l1)

)
,(

i2, (j2,1, c2,1), (j2,2, c2,2), . . . , (j2,l2 , c2,l2)
)
,

. . . ,(
in, (jn,1, cn,1), (jn,2, cn,2), . . . , (jn,ln , cn,ln)

))
.

(9)

Fixing k ∈ (1, 2, . . . , n), let us look at an arbitrary element of this transition list,

Lk =
(
ik, (jk,1, ck,1), (jk,2, ck,2), . . . , (jk,lk , ck,lk)

)
. (10)

The first element ik is a state in the state space I. In the example from Section 3.1, ik would be a pitch

class. In the current model, ik ∈ I is a beat/spacing state as discussed above. Each of jk,1, jk,2, . . . , jk,lk is

an element of the state space (and not necessarily distinct). In Section 3.1 these were other pitch classes;

in the current model they are the beat/spacing states for which there exists a transition from ik, over one

or more pieces of music. Each of jk,1, jk,2, . . . , jk,lk has a corresponding musical context ck,1, ck,2, . . . , ck,lk ,

which is considered now in more detail. To avoid introducing further subscripts, attention is restricted

to the first context ck,1, which is itself a list,

ck,1 = (γ1, γ2, s,D), (11)

where γ1, γ2 are integers, s is a string, and D is a set of ontime-pitch-duration triples (dataset, Meredith

et al., 2002). The dataset D ∈ ck,1 contains datapoints that determine the beat/spacing state jk,1. In the

original piece, the state jk,1 will be preceded by the state ik,1, which was determined by some set D′ of

datapoints. For the lowest-sounding note in each dataset D and D′, γ1 gives the interval in semitones and

γ2 the interval in scale steps. For example, the interval in semitones between bass notes of the asterisked

chords shown in Figure 6 is γ1 = −5, and the interval in scale steps is γ2 = −3. If either of the datasets
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Figure 6: Bars 115-120 of the Mazurka in C major op.24 no.2 by Chopin.

is empty, because it represents a ‘rest’ state, then the interval between their lowest-sounding notes is

defined as ∅. The string s is a piece identifier. For instance, s = ‘C-56-3’ means that the beat/spacing

state jk,1 was observed in Chopin’s op.56 no.3. Reasons for retaining this particular information in the

format ck,1 will become apparent in a worked example following Definition 8.

We close this subsection by justifying three design decisions. All decisions are based on trying to

decrease the sparsity of the transition list (sparse transition lists make replication of original material

more likely). (1) Why use beat position and vertical interval set as the state variables (c.f. Section 3.2)?

Cope (2005, p. 89) describes a method for syntactic meshing where each database piece is transposed

to C major or A minor and then uses beat/pitch states (as opposed to our not transposing and using

beat/spacing states). We chose to use spacing (interval sets) because the transition list is less sparse

than the corresponding list using pitches. (2) Why use the context in realisation, but not in calculating

outgoing transition probabilities (earlier in this subsection)? Similarly to (1), separation of state and

context increases the number of coincident states, which decreases the sparsity of the transition list;

(3) Why use lowest-sounding note in the realisation of a generated passage (immediately above)? The

use of some reference point is a consequence of including spacing in the state variable. Inter-onset intervals

tend to be longer for lower notes (Broze and Huron, 2012), and so lowest-sounding notes are more stable

and therefore preferable to using highest-sounding notes, say.

3.4 Random generation Markov chain (RGMC)

Definition 7. RGMC. Let (I, L,A) be an mth-order Markov chain, where I is the state space, L is the

transition list of the form (9), and A is a list containing possible initial state-context pairs. We use the

abbreviation RGMC to mean that:

1. A random number is used to select an element of the initial distribution list A.

2. More random numbers (N−1 in total) are used to select elements of the transition list L, dependent

on the previous selections.
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3. The result is a list of state-context pairs H =
(
(i0, c0), (i1, c1), . . . , (iN−1, cN−1)

)
, referred to as the

generated output.

Definition 8. Markov model for Chopin mazukas. Let I denote the state space for a first-

order Markov model, containing all beat/spacing states (cf. Section 3.2) found over thirty-nine Chopin

mazurkas.3 Let the model have a transition list L with the same structure as L in (9), and let it retain

musical context as in (11). The model’s initial distribution list A contains the first beat/spacing state

and musical context for each of the thirty-nine mazurkas, and selections made from A are equiprobable.

An RGMC for the model (I, L,A) generated the output

H ′ =

(((
1, (7, 5, 4)

)︸ ︷︷ ︸
=i′0

,
(
∅, ∅, ‘C-24-2’, D0

)︸ ︷︷ ︸
=c′0

)
,
((

2, (7, 9, 8)
)
,
(
− 5,−3, ‘C-24-2’, D1

))
,

((
3, (7, 9, 5)

)
,
(
0, 0, ‘C-17-4’, D2

))
,
((

1, (7, 10, 2)
)
,
(
0, 0, ‘C-17-4’, D3

))
,((

1 1
2 , (7, 10, 2)

)
,
(
0, 0, ‘C-17-4’, D4

))
,
((

2, (7, 10, 2)
)
,
(
0, 0, ‘C-17-4’, D5

))
,((

3, (7, 9, 3)
)
,
(
0, 0, ‘C-17-4’, D6

))
, . . . ,

((
1, (4, 5, 7)

)
,
(
0, 0, ‘C-50-2’, D34

)))
,

(12)

giving N = 35 state-context pairs in total. We have tried to make the format clear by bracing the first pair

H ′0 = (i′0, c
′
0) in (12). The formats of i′0 and c′0 are analogous to (8) and (11) respectively. By definition,

different random numbers would have given rise to a different—perhaps more stylistically successful—

passage of music, but the output in (12) and corresponding passage in Figure 7 have been chosen as a

representative example of RGMC for the model (I, L,A). The steps involved in realising the generated

output H of an RGMC (cf. Definition 3), to form a dataset D consisting of ontime-pitch-duration triples

(considered the bare minimum for having generated a passage of music) are addressed now.

To convert the first element H ′0 = (i′0, c
′
0) of the list H ′ into ontime-pitch-duration triples, an initial

bass pitch is stipulated, say E4, having MNN 64 and morphetic pitch number (MPN) 62. MPNs are

required for correct pitch spelling (see Meredith, 2006). The chord spacing (7, 5, 4) determines the other

MNNs, 64 + 7 = 71, 64 + 7 + 5 = 76, and 64 + 7 + 5 + 4 = 80. The corresponding MPNs are found by

combining the initial bass MPN, 62, with the dataset from the musical context,

D0 = {(0, 48, 53, 1), (0, 55, 57, 1), (0, 60, 60, 1), (0, 64, 62, 1)}. (13)

Due to a bijection between pitch and MNN-MPN representations, the pitch material of the first element

H ′0 of the list H ′ is determined as E4, B4, E5, and G]5 (see the first chord in Figure 7).
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Figure 7: Realised generated output of an RGMC for the model (I, L,A). This passage of music is derived
from H ′ in (12). The numbers written above the stave give the opus/number and bar of the source. Only
when a source changes is a new opus-number-bar written. The box in bars 5-6 is for a later discussion.

To calculate an ontime for the first element H ′0, we use the state i′0, coming from beat 1, indicating

that the mazurka chosen to provide the initial state (op.24 no.2) begins on the first beat of the bar.

Adhering to the convention that the first full bar of a piece begins with ontime zero, the ontime for each

triple being realised from H ′0 will be zero.4 It can be seen in the dataset from the musical context (13)

that each datapoint has the same duration, 1 crotchet beat. This duration becomes the duration of each

of the realised triples for H ′0. The realisation of durations is always done with reference to the datasets

D0, D1, . . . , D34, but is not always so straightforward due to notes belonging to more than one minimal

segment (cf. Definition 4 and see bars 4-5 of Figure 5). For more information on this topic, including how

polyphonic textures arise from generated output, see Section 8.4 of Collins (2011). The second element

H ′1 =
((

2, (7, 9, 8)
)
,
(
− 5∗,−3∗, ‘C-24-2’, D1

))
(14)

of the list H ′ is converted into ontime-pitch-duration triples in much the same way as the first element

H ′0. One difference is the use of contextual information; in particular the intervals between bass notes

of consecutive minimal segments. For example, the interval in semitones between bass notes of the

asterisked chords shown in Figure 6 is γ1 = −5, and the interval in scale steps is γ2 = −3. This is the

origin of the two asterisked numbers in (14). The interval between bass notes is retained in the passage

being realised, giving the MNN-MPN pairs (59, 59), (66, 63), (75, 68), and (83, 73). By virtue of the
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bijection between pitch and MNN-MPN representations, these pairs map to the pitches B3, F]4, D]5,

and B5 (see the second chord in Figure 7). The realisation of H ′ continues, mapping H ′2, H
′
3, . . . ,H

′
34 to

ontime-pitch-duration triples.

The key signature, time signature, tempo, and initial bass note of the passage shown in Figure 7 are

borrowed from Chopin’s op.56 no.1. Information from the chosen initial state could have been used

instead, but further information from op.56 no.1 will be used in Section 3.6.

3.5 Stylistic shortcomings of RGMC

First-order Markov modelling is a common and promising approach for algorithmic stylistic composition,

as it ‘ensures beat-to-beat logic in new compositions’ (Cope, 2005, p. 91). Unfortunately ‘it does not

guarantee the same logic at higher levels. . . phrases simply string together without direction or any large-

scale structure’ (ibid.). The passage shown in Figure 7 is arguably too short to be criticised for lacking

global structure, but other shortcomings are:

Sources. Too many consecutive states come from the same original source. Numbers above each state

in Figure 7 are the opus, number within that opus, and the bar number in which the state occurs.

The boxed material contains four consecutive states from op.50 no.2, for instance. Having criticised

the output of EMI for bearing too much resemblance to original Chopin (Figure 3), steps should

be taken to avoid the current model being susceptible to the same criticism.

Range. The passage in Figure 7 begins in the top half of the piano’s range, due to stipulating the initial

bass note as E4. But this is from op.56 no.1, so some mazurkas do begin this high. A four-note chord

built on top of this bass note contributes to the sense of an unusually high opening. Therefore, a

solution to this shortcoming ought to be sensitive to positions of both lowest- and highest-sounding

notes in a chord. An awareness of the distribution of notes within that chord—spread evenly, or

skewed towards the top, for instance—may also be useful.

Likelihood. Monitoring the probability of new pitch material is one way of quantifying and controlling

what may be perceived as a lack of tonal direction. For example, MNNs corresponding to the

pitches B]4, E]4, and A]4 appear in bar 5 of Figure 7 for the first time. Using a local empirical

distribution, formed over the current ontime and a number of preceding beats, it is possible to

calculate the likelihood of the chords that appear in bar 5. If the empirical likelihood of any chord

is too low, then this could identify a stylistic shortcoming. Low likelihood alone may not be the
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problem, as a Chopin mazurka may well contain several such chords: the temporal position of these

chords within an excerpt will be appropriate to altering or obscuring the tonal direction, however.

Departure and arrival. The passage in Figure 7 outlines a IV-I progression in bars 1-4, thus the first

half of the passage conveys a sense of departure and arrival, albeit serendipitously. The move

towards D minor in bars 7 and 8, on the other hand, does not convey the same sense of arrival.

Stipulating a final bass note (in addition to stipulating the initial bass note of E4) would have

increased the chance of the passage ending in a certain way. Students of chorale harmonisation

are sometimes encouraged to compose the end of the current phrase first, and then to attempt a

merging of the forwards and backwards processes. Cope (2005, p. 241) has also found the concept

of composing backwards useful.

The use of hand-coded rules (or constraints) to guide the generation of a passage of music was mentioned

in Section 2.1 (Ebcioǧlu, 1994; Phon-Amnuaisuk et al., 2006; Anders and Miranda, 2010; Elowsson and

Friberg, 2012). We questioned whether such systems alone are viable beyond relatively restricted tasks

in stylistic composition. RGMCs, on the other hand, seem to be appropriate for modelling open-ended

stylistic composition briefs. There is a role for constraints to play, however, in addressing the shortcomings

outlined above. For a so-called template piece (Figure 8A), we monitor the range (Figure 8B) and

likelihood profile (Figure 8C, dashed line).5 At each step of the RGMC (cf. Definition 7), the generated

passage must not have sampled too many consecutive states from the same source (parameter csrc), and

it must have a range (parameters cmin, cmax, and c) and likelihood profile (parameters cprob and cbeat)

that fall within specifiable distances of the template piece. If any of the constraints cannot be met at step

k, the selected state is revised by resampling from the transition list L. After cterm revisions, the process

backtracks and revises step k − 1. The passage shown in Figure 8D satisfies the constraints without

replicating the template piece (Figure 8A).6 The effect of the constraints is evident on comparing Figure

8D to Figure 7. A template is defined formally as follows.

Definition 9. Template. For an existing excerpt of music, a template consists of the tempo instruction;

key signature; time signature; pitch of the first minimal segment’s lowest-sounding note; partition points

(cf. Definition 4); lowest- and highest-sounding, and mean MNNs at each partition point; geometric mean

likelihood at each partition point (likelihood profile).

The use of a template as a basis for composition is discussed by N. Collins (2009, p. 108) and Hofstader

(writing in Cope, 2001), who coins the verb to ‘templagiarise’ (p. 49). We argue that the term plagiarise

is too negative, except when the composer (or algorithm for music generation) uses: (1) a particularly
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Figure 8: (A) Bars 1-9 of the Mazurka in B major op.56 no.1 by Chopin; (B) Plots of lowest- and highest
sounding, and mean MNNs against ontime are indicated by black lines passing through grey noteheads;
(C) Two likelihood profiles, for the excerpt in Figure 8A and the passage in Figure 8D; (D) Realised generated
output of an RGMC for the model (I, L,A), with constraints applied to sources, range, and likelihood.

well-known piece as a template and does little to mask the relationship; (2) too explicit a template (even

if the piece is not well known), the result being obvious quotations from the musical surface.

To impart generated passages with a sense of departure and arrival, we return to the idea of a backwards

Markov process that was mentioned at the bottom of Definition 2. Up to this point, a list of states A

from the beginning of each mazurka in the database has been used to generate an initial state. This list

is referred to as the external initial states, now denoted A↪→. When generating backwards, a list A←↩

of external final states—that is, a list of states from the end of each mazurka in the database—may be

appropriate. If, however, the brief were to generate a passage from bar one up to the downbeat of bar

nine, then states from the very end of each mazurka are unlikely to provide stylistically suitable material

for bar nine of a generated passage. Another list A← of internal final states is required. This list contains

three beat/spacing states from each mazurka in the database (three is an arbitrary choice), taken from

the time points at which the first three phrases are marked as ending in the score (Paderewski, 1953). For

bar nine, say, of a generated passage, the internal final states would probably provide more stylistically

suitable material than the external final states. The list A→ of internal initial states is defined similarly:

it is a list consisting of three beat/spacing states (where these exist) from each database mazurka, taken
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from time points corresponding to the beginning of phrases two, three, and four. The internal initial

states would be appropriate if the brief was to generate a passage from bar 9 onwards, say.

Our four-step process for trying to ensure that a generated passage imparts a sense of departure and

arrival is as follows. Let us assume the brief is to generate a passage from ontime x1 to ontime x2, and

let x1|2 = d(x1 + x2)/2e.

• Use a forwards RGMC process with a template and constraints to generate cfor lots of output,

realised as the datasets D→1 , D
→
2 , . . . , D

→
cfor

, all of which are candidates for occupying the time

interval [x1, x1|2].

• Use a backwards RGMC process with the same template and constraints to generate cback lots of

output, realised as the datasets D←1 , D
←
2 , . . . , D

←
cback

. These are candidates for occupying the time

interval [x1|2, x2].

• Consider all possible combinations of passages constructed by appending D→i and D←j , where

1 ≤ i ≤ cfor and 1 ≤ j ≤ cback, and then either (1) removing the datapoints of D←j at ontime x1|2,

(2) removing the datapoints of D→i at ontime x1|2, or (3) superposing the datapoints of D→i , D
←
j .

So, there will be 3× cfor × cback candidate passages in total.

• Of the 3cforcback candidate passages, select the passage whose states are all members of the transition

list and whose likelihood profile is, on average, closest to that of the template piece.

This approach should be contrasted with Pachet and Roy’s (2011) attempt to steer Markov sequences

to achieve certain musical aims, which involves recasting sequence generation as a constraint satisfaction

problem. The algorithms generate chord sequences and melodies, however, rather than the full textures

studied here.

Bringing together several previous definitions, we can now define Racchman-Oct2010, standing for

RAndom Constrained CHain of MArkovian Nodes.7 A date stamp is appended so it can be clearly

differentiated in future work. Racchman-Oct2010 is one of the models evaluated in Section 4.

Definition 10. The RAndom Constrained CHain of MArkovian Nodes (Racchman-Oct2010)

is an RGMC with the state space I and transition list L from Definition 8. It has four lists A↪→, A→, A←,

and A←↩ for generating internal or external initial states as appropriate. At each stage 0 ≤ n ≤ N − 1 of

the RGMC, the generated output is realised and tested for the constraints pertaining to sources, range,

and low-likelihood chords. If at an arbitrary stage 0 ≤ k ≤ N−1 any of these constraints are not satisfied,
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the RGMC is said to have reached a terminal state, and an alternative continuation based on stage k− 1

is selected and retested, etc. If the constraints are not satisfied more than cterm times at stage k, the

state at stage k− 1 is revised and retested, etc. The RGMC continues until either: the generated output

consists of a specified number of beats, in which case the generated output is realised and stored as one

of the candidate passages (see above list); or the constraints are not satisfied more than cterm times at

stage k = 0, in which case the RGMC is restarted.

Example output of Racchman-Oct2010 is given in Figure 9.8 Figures 9A and 9B are realised output

of a forwards RGMC process, and are candidates for occupying a time interval [0, 12]. Figures 9C and

9D are realised output of a backwards RGMC process, and are candidates for occupying a time interval

[12, 24]. For the backwards process, the template contains the pitch of the last minimal segment’s lowest-

sounding note, as opposed to the first. Definitions of the transition list and likelihood profile are also

reversed appropriately. With two candidates for each time interval (cfor = cback = 2), and three ways of

combining each pair of candidates (as described in the penultimate point above), there are 12 = 3cforcback

candidate passages in total. Of these twelve, it is the passage shown in Figure 9E whose states are all

members of the transition list and whose likelihood profile is, on average, closest to that of the template.

The difference between Figures 8D and 9E is a degree of control in the latter case over the sense of

departure and arrival, due to the combination of forwards and backwards processes, and the extra pitch

constraint for the last lowest-sounding note. The excerpt used as a template for both Figures 8D and 9E

is bars 1-9 of op.56 no.1, as shown in Figure 8A. At the end of this excerpt, there is a pedal consisting of

G2 and D2, which in the full piece persists for a further three bars, followed by chord V7 in bars 13-15

and chord I in bar 16. Arguably therefore, the template itself lacks a sense of arrival in bar 9, and this is

reflected better in Figure 9E, ending with chord ivb, than in Figure 8D, which cadences on to chord v.

3.6 Pattern inheritance

One of the criticisms of RGMC is that the resultant music lacks large-scale structure: as observed in the

Introduction, ‘[i]n music, what happens in measure 5 may directly influence what happens in measure

55, without necessarily affecting any of the intervening material’ (Cope, 2005, p. 98). When developing

the model Racchman-Oct2010, no attempt was made to address this criticism: Local or global structures

that the listener hears in the passages of Figures 7, 8D, and 9 have occurred by serendipity. This model

is not alone in ignoring matters of structure, for ‘[t]he formalization of music has not always covered so
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Figure 9: (A, B) Passages generated by forwards RGMC; (C and D) Passages generated by backwards RGMC;
(E) One solution for combining passages generated by forwards and backwards RGMC.

readily the form of music, particularly from a psychological angle that takes the listener into account’

(N. Collins, 2009, p. 103).

In this section, the matter of structure is addressed by a second model, Racchmaninof-Oct2010, standing

for RAndom Constrained Chain of MArkovian Nodes with INheritance Of Form.9 This model tries to

ensure that discovered patterns from the template piece are inherited by the generated passage. The

pattern discovery algorithm SIACT (Collins et al., 2010) is applied to a projection (ontime, MNN, and

MPN) of the excerpt being used as a template. SIACT is intended for intra-opus pattern discovery (i.e.,

discovering repeated patterns within a piece of music). It uses a geometric representation of a piece

(Meredith et al., 2002) in which notes are converted to points in pitch-time space (e.g., a dimension for

ontime, another for MNN, and a third for MPN). First SIACT calculates and sorts the difference between

each pair of points, to find point collections that are all translatable by some fixed amount in the point set.

One such collection, for instance, might correspond to all and only those notes that are repeated six beats

later and one pitch step lower. The collections are called maximal translatable patterns (MTPs, Meredith
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et al., 2002). A potential problem with MTPs—called the problem of isolated membership (Collins et al.,

2010)—is that sometimes they contain a perceptually salient pattern as well as temporally isolated notes

that also satisfy the mathematical condition. The second part of SIACT is responsible for removing these

temporally isolated members, and returning only the perceptually salient patterns. SIACT is sufficiently

flexible to find short motifs, medium-length themes, as well as longer repeated sections.

The resulting patterns are filtered and rated by a perceptually validated formula (Collins et al., 2011).

Collins et al. (2011) asked music undergraduates to rate the musical importance of already-discovered

repeated patterns. Variable selection techniques were used to relate observed ratings to quantifiable prop-

erties of the patterns (such as the number of notes contained in one occurrence). Ratings of a pattern’s

musical importance could be predicted by a linear combination of three factors: compactness, compres-

sion ratio, and the pattern’s expected number of occurrences. Whilst a pattern occurs, some notes that

are not part of the pattern may be played, and compactness measures the proportion of contemporaneous

notes that are in the pattern (Meredith et al., 2003). Approximately, compression ratio is the harmonic

mean of the number of notes in a pattern and the pattern’s number of occurrences (Meredith et al., 2003).

A pattern’s perceived importance seemed to be increased by having high compactness and compression

ratio, while unexpected patterns (Conklin and Bergeron, 2008) were also perceived as more important.

The rated patterns are labelled in order of rank, so that pattern Pi,j rates higher than Pk,l if and only

if i < k. The second subscript denotes occurrences of the same pattern in lexicographic order. That is,

pattern Pi,j occurs before Pi,l if and only if j < l. An example of the output of the discovery process is

shown in Figure 10. Pattern P1,1 (indicated by the solid line) is rated higher than pattern P2,1 (indicated

by the dashed line), which in turn is rated higher than P3,1 (indicated by the dotted line). The second

model for generating stylistic compositions, Racchmaninof-Oct2010, attempts to ensure that the same

type of patterns discovered in the template excerpt occur in a generated passage. The location but not

the content of each discovered pattern is retained, as indicated in Figure 11.

Definition 11. Template with patterns. The term template was the subject of Definition 9. Tem-

plate with patterns refers to the following supplementary information being retained when patterns P1,1,

P2,1, . . ., PM,1 have been discovered in an excerpt. For each discovered pattern Pi,1, retain:

• The ontimes of the first and last datapoints. For the sake of simplicity, these are rounded down

and up respectively to the nearest integer.

• Its translators vi,2,vi,3, . . . ,vi,mi
inD, which bring Pi,1 to the other occurrences Pi,2, Pi,3, . . . , Pi,mi

.

30



!"

!"

  Allegro non tanto

# $$$$$ %%
!

& % !

& ! & & & '% !

& ! & & & %
!

& ! & & & '%
!

& ! & & ! &' (

) $$$$$ * &+ & & & & & & * &+ & & &' & & & * &'+ & &

6

# $$$$$ % !

& !

& & &' '%
!

& ! & &' &&' '%& !

&' % &' '%
!

& ! & & ! &' ( % !

& !

& & &'

) $$$$$ ,%' ! %%''
'% !&& %%''

% !&& %%'' %%
!

!

* &' ( & & '% !&& %%''

11

# $$$$$ '%
!

& ! & &' &&' %$
*!%

!

&- &. && ''$ &&% !

& & &% & & / & & & & / & & & &&&
(

) $$$$$ '% !&& %%''
&&& &' & &&

& ! &+ %& / & % & %& / & % & &(

! 

P
1,2

! 

P
2,2

! 

P
3,3

! 

P
3,2

! 

P
2,1

! 

P
3,4

! 

P
2,3

! 

P
3,1

! 

P
1,1

Figure 10: SIACT was applied to a representation of bars 1-16 of the Mazurka in B major op.56 no.1 by
Chopin, and the results were filtered and rated. Occurrences of the top three patterns are shown.
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Figure 11: A representation of the supplementary information retained in a template with patterns. For
comparison, an ordinary template (cf. Definition 9) is represented in Figure 8. Most of the content of the
excerpt from op.56 no.1 has been removed, but the location of the discovered patterns remains.
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• The lowest-sounding pitch of the first and last minimal segments of the region in which the discov-

ered pattern Pi,j occurs (j 6= 1 if the algorithm discovered an occurrence other than the first).

• The number of other discovered patterns of which Pi,1 is a subset, called the subset score and

denoted §(Pi,1). The scores §(Pi,2), §(Pi,3), . . ., §(Pi,mi
) are retained also.

It is demonstrated with reference to Figure 12 how this supplementary information is employed in the

generation of a passage. The passage to be generated can be thought of as an open interval of ontimes

[a, b] = [0, 45], the same length as the excerpt chosen for the template (op.56 no.1). When the set of

intervals U for which material has been generated covers the interval [a, b], the process is complete. At

the moment this set is empty, U = ∅.

1. Generation begins with the pattern Pi,j that has maximum subset score §(Pi,j). Tied scores be-

tween §(Pi,j) and §(Pk,l) are broken by highest rating (min{i, k}) and then by lexicographic order

(min{j, l}). It is evident from Figure 10 that P3,3 has the maximum subset score. The ontimes of

the first and last datapoint have been retained in the template with patterns, so it is known that

material for the ontime interval [a1, b1] = [12, 15] must be generated. This is done using the first

model Racchman-Oct2010, with internal initial and final states, and the lowest-sounding pitches

retained in the template with patterns. The resulting music is contained in box 1 in Figure 12. The

set of intervals for which material has been generated becomes U = {[12, 15]}.

2. Having retained the nonzero translators of Pi,1 = P3,1 in D in the template with patterns, trans-

lated copies of the material generated in step 1 are placed appropriately, giving the music con-

tained in boxes labelled 2 in Figure 12. Now U = {[0, 3], [6, 9], [12, 15], [24, 27]}. It is said that

P3,1, P3,2, P3,3, P3,4 have been addressed.

3. Generation continues for the pattern with next highest subset score, in this example P2,2. This

pattern has corresponding ontime interval [a2, b2] = [12, 15]. As this interval is contained in U , no

material is generated. (Had [a2, b2] = [12, 17], say, then material would have been generated for

[15, 17] and connected to that already generated for [12, 15]. Had [a2, b2] = [9, 17], say, then material

for [9, 12] and [15, 17] would have been generated and connected either side of that for [15, 17].)

Ontime intervals for patterns P2,1 and P2,3 have also been covered, so generation continues with

the pattern P1,1, as this is the remaining unaddressed pattern. Pattern P1,1 has an ontime interval

of [a3, b3] = [12, 24]. Now [12, 15] ∈ U , meaning that material must be generated for the remainder

of this interval, [15, 24]. Again, the model Racchman-Oct2010 is used, and the resulting music is
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Figure 12: Passage generated by the model Racchmaninof-Oct2010, standing for RAndom Constrained Chain
of MArkovian Nodes with INheritance Of Form. The numbered boxes indicate the order in which different
parts of the passage are generated, and correspond to the numbered list after Definition 11. This passage is
used in the evaluation in Section 4, as stimulus 29.

contained in box 3 in Figure 12. As [12, 15], [24, 27] ∈ U , initial and final states for the material

to fill [15, 24] have been generated already. This ensures continuity of the music between the three

time intervals, as illustrated by the overlapping of box 3 by surrounding boxes in Figure 12. Now

U = {[0, 3], [6, 9], [12, 15], [15, 24], [24, 27]}.

4. Having retained the nonzero translator of P1,1 in D in the template with patterns, a translated

copy of the material generated in step 3 is placed appropriately, giving the music contained in box

4 in Figure 12. Now U = {[0, 3], [6, 9], [12, 15], [15, 24], [24, 27], [27, 36]}.

5. All patterns contained in the template have been addressed, but still U does not cover the passage’s

ontime interval [a, b] = [0, 45]. Material for the remaining intervals, [a4, b4] = [3, 6], [a5, b5] = [9, 12],

and [a6, b6] = [36, 45], is generated in this final step. The model Racchman-Oct2010 is used three

times (once for each interval) and the resulting music appears in boxes labelled 5 in Figure 12.

These intervals are included in U and the process is complete.

The above list outlines an example run of the model we call Racchmaninof-Oct2010 (RAndom Con-

strained Chain of MArkovian Nodes with INheritance Of Form).10 This description of an example run,

with the resulting passage in Figure 12, is intended to provide a better impression of the workings of

Racchmaninof-Oct2010 than would a more abstract definition. Intuitively, Racchmaninof-Oct2010 com-
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prises several runs of the simpler model Racchman-Oct2010, runs which generate material for ontime

intervals, according to the order of subset scores and until the ontime interval for the entire passage is

covered. The result is a Markov model where, in Cope’s (2005) terms, it is possible for what happens at

bar 5 to influence bar 55. For instance, comparing Figures 10 and 12, it is evident that the locations—but

not the content—of the discovered patterns have been inherited by the generated passage.

4 Evaluation

This section consists of an evaluation of our models Racchman-Oct2010 and Racchmaninof-Oct2010,

and Cope’s (1996; 2005) EMI. The chosen stylistic composition brief is to compose the opening section

(∼ sixteen bars) of a Chopin-style mazurka, and the evaluation addresses the following questions:

1. Success. How do mazurkas generated by our models compare in terms of stylistic success to:

original Chopin mazurkas; Mazurkas, after Chopin (Cope, 1997b) attributed to EMI; mazurkas by

other human composers?

2. Distinguishing. Are judges able to distinguish between the different categories of music stimulus

(e.g., human-composed/computer-based)? Are judges better than chance at distinguishing between

human-composed stimuli and those based on computer progams that learn from Chopin’s mazurkas?

3. Reliability. In terms of the stylistic success ratings for each stimulus, is there a significant level

of interjudge reliability? What about interjudge reliability for aesthetic pleasure?

4. Correlations. For a given judge, is there significant correlation between any pair of the following:

ratings of stylistic success; ratings of aesthetic pleasure; categorisation of stimuli as computer-based?

5. Attributes. Are there particular aspects of a stimulus that lead to its stylistic success rating (high

or low)? Are certain musical attributes useful predictors of stylistic success?

The general framework for the evaluation is Amabile’s (1996) CAT. In our particular version of the

CAT, a judge’s task involves giving ratings of stylistic success (Pearce and Wiggins, 2007) and aesthetic

pleasure, and distinguishing between different categories of music stimulus (Pearce and Wiggins, 2001).

Each of the evaluation questions can be cast as quantitative, testable hypotheses, apart from the first

part of question 5, which was assessed using judges’ open-ended textual responses.
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4.1 Judges and instructions

The first group of judges (8 males and 8 females), referred to hereafter as concertgoers, were recruited

at a concert containing music by Camille Saint-Saëns (1835-1921) and Marcel Tournier (1879-1951) for

violin and harp, which took place in St Michael’s Church, The Open University. The second group of

judges (7 males and 9 females), referred to hereafter as experts, were recruited from various email lists,

were pursuing or had obtained a Master’s Degree or PhD, and played/sang nineteenth-century music or

considered it to be one of their research interests.

Both the concertgoers (mean age = 59.65 years, SD = 5.51) and experts (mean age = 31.25, SD =

11.89) were paid £10 for an hour of their time, during which they were asked to listen to excerpts of music

and answer corresponding multiple-choice and open-ended questions. Judges participated one at a time,

and were seated at a computer on which instructions and tasks appeared in a graphical user interface.

The instructions, which were the same for concertgoer and expert judges, began by introducing Chopin’s

mazurkas. Judges listened to two Chopin mazurka excerpts (op.24 no.1 and op.41 no.4, approximately

the first sixteen bars) and were asked by the first author to comment verbally on musical characteristics

that the excerpts had in common. Judges received these instructions for the main task:

‘You will be asked to listen to and answer questions about short excerpts of music. Some of

these excerpts will be from Chopin mazurkas. Some excerpts will be from the work of human

composers, but not Chopin mazurkas (e.g., a fantasia by Mozart would fit into this category,

as would an impromptu by Chopin, as would a mazurka by Grieg). Some excerpts will be

based on computer programs that learn from Chopin’s mazurkas.’

The last category, including output of the models described in Section 3 and EMI (Cope, 1997b), is

referred to hereafter as computer-based. Judges were warned that some of the computer-based stimuli

were more obvious than others. The instructions then described distinguishing between the three different

categories above, rating of a stimulus’ stylistic success, and rating of the aesthetic pleasure conferred by

a stimulus. Working definitions of stylistic success and aesthetic pleasure were provided:

Stylistic success. An excerpt of music is stylistically successful as a Chopin mazurka if, in your judge-

ment, its musical characteristics are in keeping with those of Chopin’s mazurkas. Use the introduc-

tory examples as a means of comparison, and/or any prior knowledge about this genre of music.

Aesthetic pleasure. How likely would you be to add a recording of this piece to your music collection?
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Ratings of stylistic success and aesthetic pleasure were elicited using a seven-point scale, 1 for low and

7 for high. For each stimulus, the three questions (distinguish, style, and aesthetic) were framed above

by the embedded sound file and a question that checked whether the judge had heard an excerpt before,

and below by a textbox for any other comments. There was also a textbox for comments specific to

the rating of stylistic success. The main task consisted of thirty-two stimuli, with order of presentation

randomised for each judge, and three different question orders employed (distinguish, style, aesthetic;

style, distinguish, aesthetic; aesthetic, distinguish, style) to mitigate ordering effects. Prior to the main

task each judge completed the same short warm up task, responding to the questions for two excerpts.

A judge’s answers to the warm up task were reviewed before the main task, and it was disclosed that one

of the warm up excerpts was a Chopin mazurka (op.6 no.2). The three Chopin mazurkas (two from the

introductory instructions and one from the warm up task) were embedded in a menu to one side of the

interface, so that judges could remind themselves of the examples at any point.

4.2 Selection and presentation of stimuli

Stimuli were prepared as MIDI files with a synthesised piano sound. Each stimulus was the first forty-five

beats from the selected piece, which is approximately fifteen bars in triple time. To avoid abrupt endings,

a gradual fade was applied to the last nine beats. Depending on a judge’s preference and the listening

environment (we travelled to expert judges, rather than vice versa), stimuli were presented via external

speakers (RT Works 2.0) or headphones (Performance Plus II ADD-800, noise cancelling). The MIDI files

were metronomically exact and dynamically uniform. We considered that the alternatives (MIDI with

expressive timing and dynamic variation, or audio recorded by a professional pianist) would introduce

uncontrollable sources of variation. Rubato is a prominent feature in professional recordings of Chopin’s

mazurkas (Spiro et al., 2008), however, so it would be worth manipulating metronomic rendering versus

expressive rendering in the future. The stimuli are available from the website mentioned previously, and

are as follows:

Chopin mazurka. Mazurkas by Chopin in:

1. B[ minor op.24 no.4.

2. G major op.67 no.1.

3. A[ major op.7 no.4.

4. F] minor op.59 no.3.

5. C] minor op.63 no.3.

6. B minor op.33 no.4.
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Human other.

7. Mazurka in G minor from Soirées musicales op.6 no.3 by Clara Schumann.

8. Prelude in B major from Twenty-four Preludes op.28 no.11 by Chopin.

9. Romance in F major from Six Piano Pieces op.118 no.5 by Johannes Brahms.

10. Rondeau, ‘Les baricades mistérieuses’, from Ordre no.6 by François Couperin (1668-1733).

11. No.5 (Etwas rasch) from Six Little Piano Pieces op.19 by Arnold Schoenberg (1874-1951).

12. Mazurka in F major, ‘Michaela’s mazurka’, by David A. King.11

Computer-based.

EMI. Mazurkas, after Chopin (Cope, 1997b) attributed to EMI. Mazurkas in:

13. A minor no.1.

14. C major no.2.

15. B[ major no.3.

16. E minor no.4.

17. B[ major no.5.

18. D major no.6.

System A. Passages generated by the model Racchman-Oct2010, with parameter values for num-

ber of terminations permitted (cterm = 10), for consecutive states from the same source

(csrc = 4), for constraining range (cmin = cmax = c = 19), for constraining low-likelihood

chords (cprob = .2, and cbeat = 12), and for a sense of departure/arrival (cfor = cback = 3).

The Chopin mazurka used as a template is in brackets. Mazurkas in:

19. C major (op.56 no.2).

20. E[ minor (op.6 no.4).

21. E minor (op.41 no.2).

22. C minor (op.56 no.3).

23. A minor (op.17 no.4).

24. F minor (op.63 no.2).

System B. Passages generated by the model Racchmaninof-Oct2010, with parameter values less

than or equal to cterm = 10, csrc = 4, cmin = cmax = c = 31, cprob = 1, and cbeat = 12, and

cfor = cback = 3. The Chopin mazurka used as a template is in brackets. Mazurkas in:

25. C] minor (op.50 no.3).

26. C major (op.67 no.3).

27. B major (op.41 no.3).

System B∗. Passages generated by the model Racchmaninof-Oct2010, with parameter values less

than or equal to cterm = 10, csrc = 4, cmin = cmax = c = 24, cprob = .2, and cbeat = 12, and

cfor = cback = 3. Again, the Chopin mazurka used as a template is in brackets. Mazurkas in:
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28. C major (op.68 no.1).

29. B major (op.56 no.1).

30. F major (op.68 no.3).

31. A minor (op.7 no.2).

32. A[ major (op.24 no.3).

The main difference between Systems A, B, and B∗ is that Systems B and B∗ use pattern inheritance.

The difference between Systems B and B∗ is that the parameter values of the latter are tighter, meaning

one would expect stylistic success ratings for System B∗ to be greater on average than for System B.

Consequently Systems A and B∗ have comparable parameter values, whereas Systems A and B do not.

Different numbers of stimuli per category for Systems B and B∗ are permissible for the chosen analytical

methods. A mazurka section generated by System B∗ appears in Figure 12 (and is stimulus 29). Notated

versions of stimuli from Systems A, B, and B∗ appear in Collins (2011), Appendix E.

The Chopin mazurkas (stimuli 1-6) were selected to be representative of the corpus. The database used

by Systems A, B, and B∗ to generate passages did not contain any of these mazurkas, to remove the

possibility of between-stimuli references. Template pieces were selected at random from the remaining

mazurkas. For Systems A, B, and B∗, the database used to generate a passage did not contain the

template mazurka selected for that stimulus, to reduce the probability of replication. The first successfully

generated passage was used for each stimulus—we did not choose what ‘sounded best’ from a pool of

generated passages. Human other is a catch-all category, with two mazurkas by composers other than

Chopin and a piece by Chopin that is not a mazurka. Non-mazurka music from a range of musical periods

is also represented: Baroque (Couperin), Romantic (Brahms), and Twentieth Century (Schoenberg).

4.3 Results

4.3.1 Answer to evaluation question 3 (reliability)

The analysis begins by answering question 3 (reliability), as this determines how question 1 (success)

is approached. For the time being the concertgoers (judges 1-16) and experts (judges 17-32) will be

kept separate. Considering ratings of stylistic success, Kendall’s coefficient of concordance is significant

for both the concertgoers (W = .52, χ2(31) = 258, p < .001) and the experts (W = .61, χ2(31) =

301, p < .001). Turning to simulated pairwise correlations for judges’ ratings of stylistic success, 102

of the 120 (= 16 × 15/2) inter-judge correlations were significant at the .05 level for concertgoers. For

the experts, 116 of the 120 inter-judge correlations were significant at the .05 level. One expert judge
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appeared in all four of the nonsignificant correlations. A higher proportion of expert judges’ ratings

are significantly correlated, compared to the proportion for the concertgoer judges, suggesting that it

is appropriate to continue considering the two groups separately. The reliability of aesthetic pleasure

ratings were analysed in the same way as stylistic success ratings and were also significant. Notably,

whereas expert stylistic success ratings showed more concordance than those of concertgoers, it was the

other way around for ratings of aesthetic pleasure. The large age gap between the two groups of judges

should also be noted, as this could be influencing between-group differences in performance. By keeping

data from the two groups separate, however, we mitigate problems that could arise from the age gap.

4.3.2 Answer to evaluation question 1 (success)

As the ratings of stylistic success are mainly significantly positively correlated, it is reasonable to take the

mean rating of stylistic success for each excerpt. These are shown in Table 2, along with the percentage

of judges that classified each excerpt correctly, and the percentage of judges that classified each excerpt

as a Chopin mazurka. The first column of Table 2 gives the stimulus number (details in Section 4.2).

It is possible to make general observations about the stylistic success ratings in Table 2. For instance,

Clara Schumann’s mazurka (stimulus 7) is rated by the expert judges as more stylistically successful

than any of Chopin’s mazurkas, and more successful than any of those from EMI. All but one of the

excerpts from System B∗ (stimuli 28-32) are rated by the expert judges as more stylistically successful

than the amateur mazurka (stimulus 12). Both Chopin’s mazurkas and those from EMI appear to be

rated as more stylistically successful than those of Systems A, B, and B∗. To formally test for differences

in stylistic success, we conducted an ANOVA using indicator variables for mazurka-generating systems.

One ANOVA was conducted for concertgoer judges, and another for experts. The contrasts for the

ANOVAs are given in Table 3, and should be interpreted as follows. If the number in the ith row, jth

column of the table is positive (negative), then the jth source produces excerpts that are rated as more

(less) stylistically successful than those of the ith source. The magnitude of the number indicates the

significance of this difference in stylistic success. For instance, the concertgoers judged mazurkas from

EMI as more stylistically successful than those of System B∗ (as 4.88 > 0).

Table 3 suggests that Chopin’s mazurkas are more stylistically successful than those of Systems A, B,

and B∗. Mazurkas from EMI rate significantly higher for stylistic success than Systems A, B, and B∗

as well. The excerpts from EMI are not rated significantly different to the Chopin mazurkas. It would
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Table 2: Mean stylistic success ratings, percentage of judges distinguishing correctly, and percentage of judges
classing a stimulus as a Chopin mazurka. The stimulus number corresponds to the list given in Section 4.2.

Stim- Mean style success Distinguish correct (%) Classed Ch. mazurka (%)
ulus C’goers Experts C’goers Experts C’goers Experts

Chopin mazurkas
1 4.56 5.38 31.3 68.8 31.3 68.8
2 5.63 5.56 68.8 81.3 68.8 81.3
3 4.13 4.38 37.5 43.8 37.5 43.8
4 5.75 5.75 81.3 81.3 81.3 81.3
5 5.13 5.82 56.3 81.3 56.3 81.3
6 4.19 4.88 43.8 62.5 43.8 62.5
Human other (7 Clara, 8 Ch. Prel., 9 Brahms, 10 Coupn, 11 Schnbg, 12 King)
7 5.63 6.13 0.0 0.0 81.3 93.8
8 3.94 3.25 62.5 68.8 18.8 25.0
9 3.06 2.00 81.3 87.5 12.5 6.3
10 2.56 1.56 81.3 81.3 6.3 6.3
11 1.19 1.38 68.8 81.3 0.0 0.0
12 3.06 2.69 31.3 68.8 12.5 0.0

Computer-based: EMI
13 4.75 5.88 25.0 6.3 43.8 87.5
14 5.38 5.13 12.5 25.0 62.5 56.3
15 5.19 4.88 18.8 18.8 50.0 50.0
16 5.25 5.50 12.5 25.0 56.3 75.0
17 5.75 6.00 6.3 6.3 87.5 87.5
18 5.25 5.63 12.5 6.3 75.0 68.8

Computer-based: System A
19 3.25 3.31 62.5 56.3 18.0 6.3
20 4.75 4.38 25.0 62.5 56.3 25.0
21 2.81 2.69 75.0 81.3 6.3 0.0
22 2.75 2.38 50.0 68.8 18.8 0.0
23 2.75 2.63 62.5 87.5 6.3 0.0
24 3.13 3.19 68.8 93.8 18.8 0.0

Computer-based: System B
25 2.00 1.81 75.0 81.3 0.0 0.0
26 2.94 2.69 75.0 68.8 0.0 0.0
27 2.25 2.75 68.8 50.0 12.5 12.5

Computer-based: System B∗

28 3.25 2.88 43.8 81.3 25.0 0.0
29 2.94 3.06 87.5 75.0 6.3 6.3
30 2.69 2.63 56.3 68.8 12.5 6.3
31 2.75 2.89 50.0 87.5 0.0 0.0
32 2.50 2.75 81.3 93.8 12.5 0.0
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Table 3: Contrasts for two ANOVAs, one conducted using concertgoer ratings of stylistic success as the
response variable, the other using expert ratings. Asterisks indicate significance at the .001 level. Significance
of the regression is reported in the bottom row of each table, with s being the error standard deviation.

Concertgoers

Source System B∗ Human other System A Chopin mazurka EMI

System B 0.43 0.84 0.84 2.50∗ 2.87∗

System B∗ . 0.83 0.83 4.15∗ 4.88∗

Human other . . 0.00 3.48∗ 4.24∗

System A . . . 3.48∗ 4.24∗

Chopin mazurka . . . . 0.77

F (5, 26) = 10.12, p < .001, s = 0.83

Experts

Source System B∗ Human other System A Chopin mazurka EMI

System B 0.42 0.42 0.68 2.88∗ 3.08∗

System B∗ . −0.01 0.47 4.49∗ 4.87∗

Human other . . 0.50 4.71∗ 5.11∗

System A . . . 4.21∗ 4.61∗

Chopin mazurka . . . . 0.40

F (5, 26) = 12.16, p < .001, s = 0.90

have been encouraging to see the contrasts between System B∗ and System A, and between System B∗

and System B emerge as statistically significant, but they did not. A significant contrast between System

B∗ and System A would constitute evidence that pattern inheritance leads to a significant increase in

stylistic success. A significance contrast between System B∗ and System B would constitute evidence

that tightening the parameters leads to a significant increase in stylistic success. This contrast shows an

increase (of 0.429 for the concertgoers and 0.421 for the experts) but it is not significant at the .05 level.

To check for ordering effects, we investigated the proportion of times that a stimulus from EMI was

misclassified when it followed a stimulus from Systems A, B, or B∗ (p1 = .89), compared to the proportion

of times that an EMI stimulus was misclassified following a Chopin mazurka (p2 = .84). The difference

between p1 and p2 was not significant (z = −0.67, p = .51), allaying our concerns about ordering effects.

4.3.3 Answer to evaluation question 2 (distinguishing)

If a judge guesses when distinguishing between Chopin mazurka, human other, and computer-based, the

probability of distinguishing 16 or more of the 32 excerpts correctly is less than .05 (binomial, B(32, 1/3)).

Eight out of 16 concertgoer judges scored better than chance, and 15 out of 16 expert judges.12 Low

percentages in columns four and five of Table 2 indicate that judges had trouble distinguishing an excerpt

correctly as Chopin mazurka, human other, or computer-based. EMI excerpts do particularly well, with
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none of excerpts 13-18 being classified as computer-based by judges more than 25% of the time.

4.3.4 Answer to evaluation question 4 (correlations)

For the majority of judges, a judge’s ratings of stylistic success and aesthetic pleasure are significantly

positively correlated. This does not necessarily imply that judges failed to understand the nuanced

difference between stylistic success and aesthetic pleasure. More likely, this correlation is due to there

being only a couple of excerpts (Couperin Rondeau, Brahms Romance) that one would expect to receive

low stylistic success ratings but that are eminently aesthetically pleasing. If the analysis is limited to

stylistic success and aesthetic pleasure ratings for the Couperin Rondeau and the Brahms Romance,

correlation between stylistic success and aesthetic pleasure is not significant at the .05 level.

To investigate whether judges appear to be biased in favour or against what they perceive as computer-

based stimuli, but which are in fact genuine Chopin mazurkas, a two-sample t-test was conducted. The

data consist of judges’ stylistic success ratings, restricted to stimuli 1-6 (Chopin mazurkas). The first

sample contains ratings where judges misclassified stimuli as computer-based. The data associated with

participant 4 were removed from this analysis, as they revealed a strong bias against all stimuli perceived

as computer-based. Even after this removal, the result of the test suggests judges do appear to be biased

against genuine Chopin mazurkas that they perceive as computer-based stimuli (t(184) = −3.11, p < .01).

4.3.5 Answer to evaluation question 5 (attributes)

For stimuli from Systems A, B, and B∗, the experts made a total of 65 negative textual comments, which

were assigned to six categories first used by Pearce and Wiggins (2007): 12% pitch range, 11% melody,

43% harmony, 3% phrasing, 6% rhythm, leaving 25% categorised as other. Among the other category were

some comments on texture and repetition, but not enough to warrant extra categories. Of 27 positive

comments, the most highly represented of the categories was rhythm. The concertgoer comments on

stylistic success ratings exhibited similar profiles for positive and negative categories. The results suggest

harmonic aspects of Racchman-Oct2010 and Racchmaninof-Oct2010 require most attention.

Are certain musical attributes of an excerpt useful predictors of its stylistic success? A model for

relating judges’ ratings of stylistic success to musical attributes was determined using stepwise selection

(as in Pearce and Wiggins, 2007).13 Explanatory variables consisted of pitch centre, signed pitch range,

unsigned pitch range, small intervals, intervallic leaps, chromatic, cadential, rhythmic density, rhythmic
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variability, and metric syncopation (Pearce and Wiggins, 2007), as well as eight new attributes based on

a chord labelling algorithm called HarmAn (Pardo and Birmingham, 2002), keyscapes that display the

output of a key finding algorithm (Sapp, 2005), and general metric weights (Volk, 2008). Definitions of

the variables appear in Collins (2011), Appendix C. The model that resulted from stepwise selection was

rating = 0.56− 6.92 · rel metric weight entropy− 0.05 · unsigned pitch range

− 0.88 ·metric syncopation + 4.97 ·max metric weight entropy

− 1.05 · keyscape entropy− 0.11 · pitch centre− 1.50 ·mean metric weight entropy,

(15)

with test statistic F (7, 24) = 17.34, p < .001, and s = 0.70 as the error standard deviation. The stepwise

model has a value of R2 = .83, meaning that it explains 83% of the variation in ratings of stylistic

success. This model was built in order to suggest specific variables for new constraints in future work,

so it is discussed again in the next section. It is worth saying here that the metric variables in (15)

may be doing more to differentiate human-composed music of other periods from Chopin mazurkas,

than they are to differentiate the output of Racchman-Oct2010 or Racchmaninof-Oct2010 from Chopin

mazurkas: a coefficient value of −6.92 for relative metric weight entropy (RMWE) for instance means

that excerpts with either unusually high or low syncopation (compared to the mean syncopation level of

the stimulus set) tend to receive lower (minus sign) ratings of stylistic success. This applies to highly

syncopated excerpts such as the Schoenberg (RMWE = 0.505) or unsycnopated excerpts such as the

Couperin (RMWE = 1.081) but less so to Racchman-Oct2010 or Racchmaninof-Oct2010 output (e.g.,

RMWE for stimuli 20 and 29 are 0.096 and 0.012 respectively). Keyscape entropy, which quantifies the

extent to which an excerpt establishes a sense of key, is probably the first variable of interest in (15).

5 Discussion

Of perennial interest to researchers within computational creativity is how cultural artefacts are conceived

and constructed. Music compositions, an example of such artefacts, are particularly intriguing because,

as Cook (1987) remarks, they can move ‘people involuntarily, even subliminally, and yet all this is done by

means of the most apparently precise and rational techniques. . .a few combinations of pitches, durations,

timbres and dynamic values can unlock the most hidden contents of man’s spiritual and emotional being’

(p. 1). It is fair to say that these precise and rational techniques—these combinations—are not yet fully

understood, but that the field of computational creativity may shed some light on them in due course.
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In this respect, the present paper’s main contribution has been to specify how to extract repetitive

structure from an existing composition (source design), and transfer that repetitive structure to a new

composition (target design). Most often, repetitive structure in music is hierarchical. Figure 10, for

instance, shows a source design in which pattern P2,2 nests within P1,1. This hierarchical structure is

maintained in the target design, shown in Figure 12 (bar 5, labelled 1, is nested within a segment in bars

5-8 that repeats in bars 9-12). More generally, motifs may nest within themes, which themselves may

nest within repeated sections. Although inheritance of patterns has been mentioned before as a concept

(Hofstadter writing in Cope 2001, p. 49) and applied to some extent to melodic material (Shan and Chiu,

2010), the current work achieves new standards in terms of application to full textures, detailed description

of the method, and releasing the source code.14 We hope that these steps encourage other researchers from

engineering, engineering education, and design to engage in the open, challenging problem of modelling

musical creativity.

Our system Racchmaninof-Oct2010, which we cast as a within-domain analogy-based design system

(Vattam et al., 2008; Goel et al., 2009), begins by borrowing abstract information about the most nested

repetitive element in the source design, and generating material for the target design that is consistent

with this information. The next most nested element in the source design is then addressed, causing

more material to be generated for the target design while respecting any material that is already in

place. Generation of this small-scale or local material is achieved using a Markov chain constrained

by critics, and the process continues until the large-scale structure of the target design is complete.

As the borrowing is on an abstract structural level, our ‘analogous designs do not share superficial

commonalities. . .[rather] the causal relations provide the deep understanding of the design and provide

a platform for analogical reasoning’ (Qian and Gero, 1996, p. 311). As such, researchers in engineering

and/or computational creativity whose designs exhibit hierarchical structure may benefit from reflecting

upon the current approach. Indeed Qian and Gero (1996) were concerned primarily with cross-domain

knowledge, so it would seem appropriate to investigate whether a general description of hierarchical

repetitions could be applied beyond the domain of music, to the design of machines, architecture, poetry,

narrative, and visual art.

5.1 Outcomes of the listening study

Two new models of musical style—Racchman-Oct2010 and Racchmaninof-Oct2010—were described and

evaluated alongside EMI (Cope, 1996, 2005), which was evaluated rigorously here for the first time. The
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evaluation produced some encouraging results. As shown in Table 2, all but one of the excerpts from

System B∗ (Racchmaninof-Oct2010, stimuli 28-32) are rated by the expert judges as more stylistically

successful than the amateur mazurka (stimulus 12). Stimulus 20 (Racchman-Oct2010, System A) was

miscategorised as a Chopin mazurka by 56% of concertgoer judges and 25% of expert judges, and stimulus

28 (System B∗) was miscategorised similarly by 25% of concertgoer judges. Together, these results suggest

that some aspects of musical style are being modelled well by Racchman-Oct2010 and Racchmaninof-

Oct2010, and that some of the generated passages can be considered on a par with human-composed

music. Analysis of open-ended textual responses suggest phrasing and rhythm are aspects of the mazurka

style that are well modelled by our system.

The results also indicate potential for future improvements. Chopin mazurkas are rated significantly

higher in terms of stylistic success than those of Systems A (Racchman-Oct2010), B, and B∗ (both

Racchmaninof-Oct2010). The mazurkas from EMI rate significantly higher for stylistic success than

Systems A, B, and B∗ as well. This result indicates that we were unable to replicate the stylistic success

of EMI’s output, based on available descriptions and related code. This was an ambitious aim (excerpts

from EMI were not rated significantly different to the Chopin mazurkas), but the comparative evaluation

and analysis of results has enabled us to identify specific areas for future improvements, in particular

the tracking and control of tonal harmony. Identification of this area arose from analysis of judges’

open-ended textual responses, and from keyscape entropy (measuring the extent to which an excerpt

establishes a key centre) being one of the variables to enter the stepwise regression (15). In terms of

features of EMI that lead to its output receiving higher ratings, it should be possible to implement a

version of the signatures component described by Cope (2005), using more up-to-date algorithms (Collins

et al., 2010), and this may help to bridge the gap. The SPEAC component is more difficult to implement,

as accounts of labelling assignments differ between Cope (1996, p. 68) and Cope (2005, p. 227-237).

Results showed no statistically significant difference between stylistic success ratings for patterned

computer-generated stimuli (from Systems B and B∗, Racchmaninof-Oct2010) versus nonpatterned (Sys-

tem A, Racchman-Oct2010). This does not mean that repeated patterns are unimportant for modelling

musical style, however. Some judges were sensitive to repetition: ‘It sounds like a human composer in

that it is unified’ (expert judge 3 on stimulus 28 from System B∗); ‘First half appears to be repeated’

(concertgoer judge 16 on the amateur mazurka, stimulus 12). A de facto argument can be made that

inheritance of form leads to stylistically superior output (because such output is closer in structure to that

of Chopin’s mazurkas), but perhaps other aspects of style (e.g., harmony or melody) need to be better

modelled in the first place, before judges use the presence or absence of repeated patterns as a basis for
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rating stylistic success. Perception of repeated patterns may also require deeper engagement with a piece.

Judges had an hour to rate 32 excerpts of music, and perhaps a listener is unlikely to gain an appreciation

of an excerpt’s repeated patterns when only a couple of minutes will be spent listening to and thinking

about it. Another possible reason why there was no significant difference due to pattern inheritance is

that System B∗ involves generating music over several time intervals, trying to stitch an imperceptible

seam between forwards and backwards processes for each interval. Each excerpt from System A had only

one seam. It would be worth examining whether seams are perceived by judges as stylistic shortcomings,

because if so ratings for System B∗ could suffer more than ratings for System A.

In terms of distinguishing between human-composed and computer-generated music, what do the judges

comments tell us about listening strategies? Similar comments from judges sometimes lead to different

decisions, perhaps reflecting the difficulty of articulating listening strategies that were used to make

distinctions: stimulus 1 (Chopin op.24 no.4) was categorised by concertgoer judge 5 as human other,

observing that ‘the intro seemed not in character’; on the other hand, the same stimulus was categorised

correctly as Chopin mazurka by expert judge 6, observing that the stimulus is ‘harmonically. . .complex

but also goes where one hopes it will. Slightly unusual opening (solo right hand), but seems to get going

after this’. There was also a mixture of holistic and instantaneous listening strategies used: a holistic

remark from expert judge 7 on stimulus 27 from Racchmaninof-Oct2010 was that ‘all the gestures in

themselves work, but the way they are put together certainly does not’; an instantaneous decision was

made by expert judge 3 for the same stimulus, remarking that ‘I thought it was Chopin at first, but there

is a rhythm that leads me to believe it isn’t. Between bars 7-8’.

Some comments revealed lack of familiarity with the mazurka style. For instance, parallel fifths are more

common in Chopin mazurkas (see Figure 6) than in J. S. Bach’s chorale harmonisations, say. But one judge

observed ‘dissonant downbeats, parallel fifths—eek!’ in stimulus 32 from Racchmaninof-Oct2010. As

another example, the third beat of the bar in a Chopin mazurka might not contain any new notes, as some

mazurkas emphasise the second beat. One judge, however, categorised stimulus 28 from Racchmaninof-

Oct2010 as human other, perhaps because ‘the missing third beat in bars one and three sound[s] untypical’.

Interestingly, perceived randomness of a stimulus was a feature on which judges commented, but were

unsure whether or not it indicated a computer-based excerpt: one judge observed ‘it sounds too random

to be computer generated’ of stimulus 19 from from Racchman-Oct2010, whereas another judge said of

the same stimulus that the ‘rhythm [was] mostly OK but the random melodic line seems computerish’.

Overall, the above quotations suggest that sometimes judges come to the correct decision for the wrong

reasons. These situations highlight the importance of eliciting stylistic success ratings and categorisation
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decisions separately, as well as open-ended comments that justify the responses.

5.2 Limitations and future work

One clear candidate for future work is to use the models Racchman-Oct2010 and Racchmaninof-Oct2010

with different music databases, e.g. Haydn minuets. It is an open question as to whether the same model

can generate stylistically successful passages for different databases. Transition list sparsity is another

topic worthy of further investigation. For instance, we will compare state spaces over pitch collections and

chord spacings (so far only the latter has been implemented), and quantify the sparsity in each case. The

more sparse a transition list, the more likely it is that a generated sequence will replicate original data. If

replication-avoidance strategies are being used, then these will be employed more often for sparser lists,

and so the runtime for an algorithm associated with a sparse transition list will typically be longer.

Judges’ ratings of stimuli were used to build a model (15), in order to suggest specific variables for new

constraints in future versions of Racchman and Racchmaninof (as in Pearce and Wiggins, 2007). The

variable keyscape entropy emerged as a candidate for a new constraint that monitors the establishment of

key. As constraints for pitch range and mean pitch already exist in Systems A, B, and B∗, the presence of

the variables unsigned pitch range and pitch centre in (15) suggests that parameters for these constraints

were too relaxed (low). Further work is required in order to investigate whether such constraints can be

tightened (and new constraints added), and still have the models produce output within several hours.

Using an existing music database, will an algorithm ever be capable of generating compositions that

are judged as stylistically successful compared to pieces from the intended style? With a success rate

dependent on the difficulty of the composition brief, our answer is a tentative ‘yes’. What are the

implications for human musical creativity? Potentially, a revised version of the algorithm could be added

to standard notation software, allowing users to request novel fragments or continuations from diverse

styles (Collins and Coulon, 2012; Cope, 1997a; Ju and Leifer, 2008; Keller et al., 2012; Maxwell et al.,

2012). The way in which humans create music can be enhanced—not inhibited—by the capability of

automatically generating stylistic compositions, perhaps in a more iterative or implicit fashion compared

to how current software such as PG Music’s Band in a Box or Microsoft’s Songsmith enable non-experts to

compose. For humans learning the art of music creation, we see exciting possibilities involving algorithms

for automated stylistic composition.
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Endnotes

1. The term monophonic means that no more than one note sounds at any given time in a piece of

music; the term polyphonic means that more than one note may sound at any given time.

2. This example might be taken to imply that training a model (Mitchell, 1997) consists of defining a

transition matrix based solely on observed transitions. While this is the case here and in subsequent

sections, it is often not the case in data analysis, where zero probabilities can be artificially inflated

(smoothing, e.g., Manning and Schütze, 1999).

3. Data from Kern Scores, http://kern.ccarh.org. Only thirty-nine mazurkas are used, out of an

encoded forty-nine, because some of the others feature as stimuli in a later evaluation, so also

including them in the state space of the model would be inappropriate. The thirty-nine are op.6

nos.1, 3, & 4, op.7 nos.1-3 & 5, op.17 nos.1-4, op.24 nos.2 & 3, op.30 nos.1-4, op.33 nos.1-3, op.41

nos.1-3, op.50 nos.1-3, op.56 nos.2 & 3, op.59 nos.1 & 2, op.63 nos.1 & 2, op.67 nos.2-4, and op.68

nos.1-4.

4. Had the chosen mazurka started with an anacrusis, say op.24 no.3, which begins with a crotchet

upbeat, then the first ontime of the realised passage would have been −1.

5. A likelihood profile describes the probability of the current pitch content, given the pitch content

in a preceding time window of fixed length (Collins, 2011, Section 9.1.3 contains more details).

6. The parameter values were cterm = 10, csrc = 3, cmin = cmax = 7, c = 12, cprob = .1, and cbeat = 12.

7. The term node is a synonym of vertex, and is a reminder that the generation process can be thought

of as a walk in a graph, such as in Figure 2.

8. The parameter values were cterm = 10, csrc = 4, cmin = cmax = 10, c = 16, cprob = .15, and

cbeat = 12.

9. For the purposes of this acronym, the terms pattern and form are treated as synonyms.

10. The parameter values were cterm = 10, csrc = 4, cmin = cmax = 12, c = 19, cprob = .2, and

cbeat = 12.

11. Retrieved 12 October, 2010, from http://www.sibeliusmusic.com. This is a site where amateur

composers can publish music scores.
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12. Using normal approximations to the binomial distribution, the power of this test is .95 at the .05

level, assuming an alternative mean score of 19.5, which is the observed mean score of the expert

judges. For the concertgoers, with mean observed score ≈ 16.1, the power of the corresponding test

is .65.

13. Stepwise selection adds and/or eliminates variables from a model, beginning with the most sig-

nificant explanatory variable, which is added if it is significant at the .05 level. Then the least

significant variable in the model is eliminated, unless it is significant. (The variable added in step

1 will not be eliminated at step 2, because by definition it is significant.) The process is repeated

until no further additions/eliminations can be made according to these rules.

14. http://www.tomcollinsresearch.net
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