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Using Geometric Symbolic Fingerprinting
to Discover Distinctive Patterns
in Polyphonic Music Corpora
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Abstract Did Ludwig van Beethoven (1770–1827) re-use material when composing
his piano sonatas? What repeated patterns are distinctive of Beethoven’s piano sonatas
compared, say, to those of Frédéric Chopin (1810–1849)? Traditionally, in preparation
for essays on topics such as these, music analysts have undertaken inter-opus pattern
discovery—informally or systematically—which is the task of identifying two or
more related note collections (or phenomena derived from those collections, such as
chord sequences) that occur in at least two different movements or pieces of music.
More recently, computational methods have emerged for tackling the inter-opus
pattern discovery task, but often they make simplifying and problematic assumptions
about the nature of music. Thus a gulf exists between the flexibility music analysts
employ when considering two note collections to be related, and what algorithmic
methods can achieve. By unifying contributions from the two main approaches
to computational pattern discovery—viewpoints and the geometric method—via
the technique of symbolic fingerprinting, the current chapter seeks to reduce this
gulf. Results from six experiments are summarized that investigate questions related
to borrowing, resemblance, and distinctiveness across 21 Beethoven piano sonata
movements. Among these results, we found 2–3 bars of material that occurred across
two sonatas, an andante theme that appears varied in an imitative minuet, patterns
with leaps that are distinctive of Beethoven compared to Chopin, and two potentially
new examples of what Meyer and Gjerdingen call schemata. The chapter does not
solve the problem of inter-opus pattern discovery, but it can act as a platform for
research that will further reduce the gap between what music informaticians do, and
what musicologists find interesting.
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17.1 Introduction

The topic of borrowing, between composers or within a single composer’s oeu-
vre, has long been a concern for musicologists studying various periods and gen-
res (Burkholder, 2001). George Frideric Handel’s (1685–1759) music has received
much attention in this regard, so it seems appropriate to begin this chapter with
an example of Handel’s borrowing from Reinhard Keiser (1674–1739), given in
Fig. 17.1 (Roberts, 1986; Winemiller, 1997). In Fig. 17.1(a), Keiser’s seven-note
pattern occurs first in the oboe and is then sung by Clotilde. Shown in Fig. 17.1(b),
Handel uses this same sequence of pitches, again in the oboe, but with a different
rhythmic profile. Whereas Handel is often mentioned in connection with borrowing
between composers, a composer well known for reworking of his own compositions
is Beethoven:

More than a third of Beethoven’s compositions reworked his existing music in some way.

(Burkholder, 2001)

Lutes (1974) identifies a pattern from the first movement of Beethoven’s Piano Sonata
no. 5 in C minor, op. 10, no. 1 (Fig. 17.2(a)) that recurs in the first movement of the
Piano Sonata no. 6 in F major, op. 10, no. 2 (Fig. 17.2(b)). Beethoven, however, was
also apt to borrow from other composers and Lutes (1974) credits Radcliffe (1968)
with identifying the pattern in Fig. 17.2(a) as an instance of borrowing from Joseph
Haydn’s (1732–1809) Symphony no. 88 in G major, Hob.I:88 (Fig. 17.2(c)).

What do the pattern occurrences in Fig. 17.2 have in common, and how do we
define the term pattern? Commonalities first (and see Sect. 17.3 for a definition of

a

b

Fig. 17.1 (a) Bars 1–5.1 of ‘Mit einem schönen Ende’ from La forza della virtù by Keiser. Two
occurrences of a seven-note pattern are highlighted. (b) Bars 1–4.1 of ‘Must I my Acis still bemoan’
from Acis and Galatea by Handel. An occurrence of a seven-note pattern is highlighted. Throughout
this chapter, ‘bar x.y’ means ‘bar x beat y’
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Fig. 17.2 (a) Bars 233–240 of the first movement from Beethoven’s Piano Sonata no. 5 in C minor,
op. 10, no. 1. One occurrence of a twelve-note pattern is highlighted in blue. A second occurrence
in bars 237–240 is not highlighted. Instead, a different ten-note pattern is highlighted in red and
discussed later on with reference to Fig. 17.11(c). (b) Bars 18–26 with upbeat of the first movement
from Beethoven’s Piano Sonata no. 6 in F major, op. 10, no. 2. One occurrence of a twelve-note
pattern is highlighted in blue. A second occurrence in bars 25–26 with upbeat is not highlighted.
(c) Piano reduction of bars 1-4.2 with upbeat of the second movement from Symphony no. 88 in
G major by Haydn. An occurrence of a ten-note pattern is highlighted in bars 1–2, followed by a
second occurrence in bars 3–4
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pattern): the bass moves from scale degree 1̂ to 2̂. Simultaneously, the melody—
doubled at the octave—outlines a rising arpeggio, beginning on 3̂ and ending on scale
degree 1̂, followed by a fall to scale degree 7̂. This pattern provides the antecedent
of an antecedent-consequent formula typical of the period. In each excerpt, the
consequent consists of the bass moving from 7̂ to 1̂, while the melody—still doubled
at the octave—outlines a rising arpeggio beginning on 5̂ and ending on 4̂, followed
by a fall to 3̂. Putting the octave arpeggio to one side, the bass movement of 1̂–2̂–7̂–1̂
and melodic movement of 1̂–7̂–4̂–3̂ was referred to by Meyer (1980) as a schema—
instances of simultaneous bass and melodic movement to be found across many pieces.
Gjerdingen (1988) identified numerous instances of this particular schema across
the period 1720–1900, and then other different categories of schemata (Gjerdingen,
2007). So the subdiscipline of music analysis known as schema theory was born,
and remains popular to this day (Byros, 2012). So prevalent was the use of Meyer’s
schema in the Classical period, and so abstract the definition, that to mix it with
remarks on borrowing is perhaps inappropriate. It seems neither Meyer (1980) nor
Gjerdingen (1988, 2007) were aware of the examples identified in the earlier work of
Radcliffe (1968) and Lutes (1974), which are perhaps better described as borrowing
rather than schemata due to the specificity of octaves and rising arpeggios in each
case. Still, Radcliffe (1968, p. 38) cautions,

it is very dangerous to attach too much importance to thematic resemblances of this kind,
especially in music written at a time when there were so many familiar turns of phrase used
by all and sundry. Haydn’s tune is slow and majestic, and Beethoven’s recollections of it all
move at a quicker pace, sometimes with the suggestion of a dance.

Whether referred to as pattern or schema, evidently the highlighted content of
Figs. 17.1 and 17.2 and surrounding discussion are of interest to music analysts
and musicologists more broadly. Processes of musical variation (more about which
below) are in evidence in these figures, but instances of literal borrowing—e.g.,
where a number of bars are reused more or less verbatim—are of interest also
(Winemiller, 1997). This chapter explores computational methods for identifying
resemblances between pieces of music (involving both literal borrowing and more
complex variation). The methods are described, applied to 21 movements from
Beethoven’s piano sonatas (which, given the above discussion, seem a sensible
place to begin), and the results are presented and discussed.1 It is remarkable how
much existing literature on Beethoven’s piano sonatas focuses on intra-movement
as opposed to inter-movement or inter-piece analyses (Caplin, 2013)—an exception
being Marston (1995). Even so, Marston’s (1995) mix of sketchbook, biographical,
and Schenkerian analysis is quite apart from what follows here. The question of
whether Beethoven intended any discovered resemblance will not be considered. We
focus instead on the likelihood of the pattern occurring in other Beethoven sonatas,
or in the piano works of another composer such as Chopin. If the pattern occurs
more often in the works of Beethoven than some other composer(s), then it can be

1 The movements used are: op. 2, no. 1, mvts. 1–4; op. 10, no. 1, mvts. 1–3; op. 10, no. 2, mvts. 1–3;
op. 10, no. 3, mvts. 1–4; op. 26, mvts. 1–4; and op. 109, mvts. 1–3. Movements were selected on
the basis of frequent mentions in the analytic literature.



17 Discovering Distinctive Patterns in Polyphonic Music Corpora 449

said to be distinctive of Beethoven’s style. Books and articles abound on the topic of
Beethoven’s sonatas, but one motivation for this chapter is to see what light can be
shed on the sonatas from the point of view of computational music analysis.

It is also remarkable how much existing (predominantly non-computational) work
on borrowing involves musical excerpts that are either at the beginning of pieces or
already known to be themes (Barlow and Morgenstern, 1948). One of the advantages
of taking a computational approach is that it can be made more democratic in terms of
detecting borrowing beyond incipits and themes. The apparent bias towards incipits
and themes in existing work also raises the question: is thematic material inherently
more distinctive than excerpts drawn from elsewhere in a movement? This is a
question that we also seek to address in the current chapter.

17.2 Select Review of Computational Pattern Discovery

While the current chapter focuses on the music of Beethoven, it is part of a wider
literature on inter-opus pattern discovery. That is, given a corpus of music, define an
algorithm that returns musically interesting patterns occurring in two or more pieces.
With regards to work on inter-opus pattern discovery, the major contribution of this
chapter is a method capable of being applied to polyphonic music—polyphonic in the
most complex sense of the term, where any number of voices may sound at a given
point in time. After processing of the symbolic representations in Fig. 17.1 to extract
individual melodic lines, there are computational methods capable of retrieving the
type of patterns shown (Conklin, 2010; Knopke and Jürgensen, 2009). At present,
however, no computational method exists capable of discovering the type of patterns
shown in Fig. 17.2. The lack of such a method goes some way towards explaining
why musicologists do not, in general, employ computational methods as part of their
research into borrowing: practitioners of music computing have tended to import
algorithms from other fields such as bioinformatics, which work well for melodic
representations but do not apply to polyphonic music where voices can appear and
disappear. Should practitioners of music computing be in any doubt about the need to
look beyond melody-only representations, then let us consider Caplin (2013, p. 39):

Although it is easy to focus attention on the melody, it is important to understand that the
basic idea is the complete unit of music in all of its parts, including its harmonic, rhythmic,
and textural components. The basic idea is much more than just its “tune”.

Broadly, there are two approaches to the discovery of patterns in symbolic rep-
resentations of music: (1) string-based or viewpoint methods (Cambouropoulos,
2006; Conklin, 2010; Conklin and Bergeron, 2008; Knopke and Jürgensen, 2009;
Lartillot, 2005) (see also Chaps. 11, 12 and 15, this volume); (2) point-set or ge-
ometric methods, such as those described in the current chapter and Chap. 13 in
this volume (see also Collins, 2011; Collins et al., 2013, 2011; Forth, 2012; Janssen
et al., 2013; Meredith et al., 2002). As the name suggests, the viewpoints approach
involves treating musical events as sequences considered from different perspectives
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(e.g., sequences of MIDI note numbers, sequences of intervals, durations, etc.) and in
different combinations. The geometric approach, on the other hand, involves repre-
senting numerical aspects of notes in a given piece as multidimensional points. The
two approaches diverge when more than two notes sound at the same point in time,
because in the viewpoints approach the sequential ordering of features of those notes
becomes ambiguous. Viewpoints have been applied in both intra- and inter-opus
pattern discovery scenarios, but up until this point, geometric methods have been
applied in intra-opus discovery scenarios only.

In this chapter, we describe the first application of geometric pattern discovery
algorithms in an inter-opus scenario. We discuss the challenges involved, present
results from the piano works of Beethoven, and suggest possible directions for
future work in this domain. The geometric method has some advantages over the
viewpoint approach: first, the geometric method can be applied conveniently to
both polyphonic and monophonic representations. Viewpoints have been applied
to polyphonic representations before (Conklin and Bergeron, 2010), but rely on
extracting a fixed number of voices from each piece in the chosen corpus; second, the
geometric method is more robust to interpolated events in pattern occurrences. For
instance, the six notes highlighted in red and labelled H2 in Fig. 17.3(c) are a diatonic
transposition of the six notes highlighted in red and labelled H1 in Fig. 17.3(a).
In between the C]4 and A3 of H2, however, there is an interpolated B3 (similarly,
there is an interpolated G]3 between the following A3 and F]3). The sequential
integrity of C]4→ A3 is broken by the interpolated B3, compared with G]4→ E4
of H1, and so the viewpoint method will not recognize the evident similarity of the
melodies in bar 1 of Fig. 17.3(a) and bar 21 of Fig. 17.3(c). We refer to this as the
interpolation problem of the viewpoint method—a problem that also affects models
of music cognition derived from the viewpoint method (e.g., Pearce et al., 2010).2

The geometric approach is more robust to this type of variation (Collins et al., 2013,
2011). Therefore, the application of geometric pattern discovery algorithms in an
inter-opus scenario described in this chapter constitutes an important advance for
computational music-analytic methods.

17.3 Method

This section begins with a mathematical definition of the term pattern. As in Chap. 13
of this volume, in the current chapter we represent notes in a given piece of music as
multidimensional points. For example, a note has a start time that might be assigned

2 Advocates of the viewpoint method might say that defining a so-called threaded viewpoint to take
pitch values only on quarter note beats would address this interpolation problem, but then offbeat
notes that do belong to a pattern are overlooked also. Since we have mentioned an advantage of
the geometric approach over the viewpoint approach, it is fair to state an advantage in the other
direction also: if one is interested primarily in patterns that consist of substrings (as opposed
to subsequences) in monophonic voices, then such patterns can be found more efficiently using
string-based representations than they can be using point-based representations.
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Fig. 17.3 (a) Bars 1–2 of the third movement from Piano Sonata no. 30 in E major, op. 109, by
Beethoven. One occurrence of a six-note pattern is highlighted in red and labelled H1. Taken together,
the red and blue notes form a fifteen-note pattern that occurs inexactly in (b), which shows bars
31–37 of the same movement. In (b), one inexact occurrence can be seen in bars 33–34, and a second
inexact occurrence in bars 35–36, with the same colour scheme as in (a) being maintained. (c) Bars
20–22 of the third movement from Piano Sonata no. 7 in D major, op. 10, no. 3 by Beethoven. An
inexact occurrence of the six-note pattern from Fig. 17.3(a) is highlighted in red and labelled H2

to the x-value of some point, and a numeric pitch value (e.g., MIDI note number)
that might be assigned to the y-value of the same point, to give d = (x,y). (Using two
dimensions is typical, but more are admissible, and later in the chapter we represent
chord labels as points rather than notes.)

In a point-set representation of a given piece of music, there may be a collec-
tion of points P1 that are perceived as similar to some other collection of points
P2, heard either elsewhere in the same piece or in another piece. In general, there
could be m so-called pattern occurrences P1,P2, . . . ,Pm across a corpus of pieces.
Sometimes it is convenient to group these together into an occurrence set, denoted
P = {P1,P2, . . . ,Pm}. The term pattern is used rather loosely to refer to a member
Pi ∈ P , normally the member that is most typical of the occurrence set (often but not
always the first occurrence, Pi = P1).



452 Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer

17.3.1 Calculating the Distinctiveness of a Pattern

Rather than seeing viewpoint and geometric approaches to pattern discovery as
two opposing camps, this chapter seeks to unify the methods to some extent, by
developing geometric equivalents of the viewpoint technique for measuring pattern
distinctiveness in inter-opus scenarios (Conklin, 2010). This technique is based on
the concept of likelihood ratio. In statistics, the likelihood ratio test gives the best
chance of occurrence of an observation under some null hypothesis, divided by its
best chance of occurrence overall. Common uses include testing goodness of fit of
observed data to some hypothesized underlying distribution (Pielou and Foster, 1962),
and testing dependencies between variables such as crime and drinking (Pearson,
1909). In viewpoint pattern discovery, the likelihood ratio appears in various guises,
e.g., for estimating the interest of an observed pattern in some corpus (Conklin
and Bergeron, 2008). Conklin (2010) uses another likelihood ratio to measure the
distinctiveness of an observed pattern P for one corpus of pieces Θ versus another
anticorpus of pieces Θ ′, written

d(P,Θ ,Θ ′) = p(P |Θ)/p(P |Θ ′) . (17.1)

In these settings, the statistics are based on either piece counts (the number of pieces
in which the pattern occurs (Conklin, 2010)) or a zero-order model (Conklin and
Bergeron, 2008). Piece counts can be problematic if a pattern occurs note for note (or
feature for feature) in some pieces but only partially in others. Only counting exact
occurrences leads to underestimation of the probability, whereas counting inexact
occurrences on a par with exact occurrences leads to overestimation. In a zero-order
model, a pattern is defined as a sequence of musical features, and its probability is
proportional to the product of the relative frequencies of occurrence of the constituent
features. Temporal order of features does not impact on the calculated probabilities in
a zero-order model, which is a shortcoming (i.e., because B4, G4, C5 might be more
probable in a certain style than the same pitches in different order, C5, B4, G4, say).
We refer to this as the zero-order problem of the viewpoint method. An extension of
these likelihood calculations to polyphonic textures has been proposed (Collins et al.,
2011), but it too assumed a zero-order model.

To develop a geometric equivalent of the distinctiveness measure, it is necessary to
calculate the empirical probability of a given pattern occurrence in a piece or across
multiple pieces, p(P |Θ), preferably using a model that is: (1) less reliant on the
sequential integrity of pattern occurrences and so addresses the interpolation problem,
which is important since variation is such a central concept in music; (2) more realistic
than one based on zero-order distributions, and so addresses the zero-order problem.
Central to this development will be the technique of symbolic fingerprinting, which
enables us to estimate the likelihood of occurrence of a pattern across one or more
pieces of polyphonic music.
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17.3.2 Symbolic Fingerprinting

Symbolic fingerprinting consists of calculating, storing, and retrieving differences
between local pairs or triples from a point-set representation of a piece or pieces,
denoted D (Arzt et al., 2012). It enables us to take some point-set query Q and find
occurrences in D of Q that have been transposed, time-shifted and time-scaled. For
readers familiar with music theory, the definition of a fingerprint will be reminiscent
of Lewin’s (1987, Chapter 4) generalized interval systems. Independently of Lewin’s
work, Wang and Smith (2012) developed an efficient fingerprinting storage and
retrieval method that enabled automatic, fast recognition of music audio, known as
Shazam.

In the general case, we have a piece of music represented as an ordered point
set D = 〈d1,d2, . . . ,dn〉.3 To begin with in this chapter, each point di ∈ D represents
a note from the piece, and is a pair di = (xi,yi) consisting of an ontime xi and a
morphetic pitch yi (MPN, see Meredith, 2006). Ontime is the time in the piece in
quarter note beats, counting from zero for bar 1 beat 1, and MPN is the height of the
note on the staff, with C4 = ‘middle C’ = 60, C]4 = 60, D[4 = D4 = D]4 = 61, etc.4

Other choices about how to represent time and pitch, and how many dimensions to
include in one point set, have been explored (Collins et al., 2010), but for the sake
of simplicity we will use ontime and MPN at present. As an example, Beethoven’s
op. 109, mvt. 3 (see Fig. 17.3(a)) would be represented as

D =
〈
(0,48),(0,59),(0,64),(1,50),(1,59),(1,62), . . . ,

(192,48),(192 1
4 ,59),(192 1

2 ,64),(192 3
4 ,55),

(193,57),(193 1
4 ,62),(193 1

2 ,59),(193 3
4 ,50),

(194,51),(194 1
4 ,60),(194 1

2 ,63),(194 3
4 ,58),

(195,59),(195 1
4 ,61),(195 1

2 ,56),(195 3
4 ,52),

(196,53),(196 1
4 ,55),(196 1

2 ,59),(196 3
4 ,60),

(197,61),(197 1
4 ,59),(197 1

2 ,56),(197 3
4 ,54), . . . ,

(891,59),(891,62),(891,64)
〉
.

(17.2)

The first chord, consisting of pitches E2, B3, and G]4, has ontime 0, and it can
be verified that the MPNs of these pitches are 48, 59, and 64 respectively. The
next excerpt of the piece given in (17.2) corresponds to bars 33–34 (the beginning
of variation II, Fig. 17.3(b)). The beginning of bar 33 has ontime 192 (although
calculating this is nontrivial, given some intervening repeat marks and first/second

3 The order is called lexicographic order. It is most easily explained in relation to (17.2). For instance,
(0,64) is lexicographically less than (1,50) because 0 < 1. If there is a tie in the x-dimension, it is
broken by the values in the y-dimension, which is why (1,50) is lexicographically less than (1,59).
And so on.
4 Note that Meredith (2006) defines the morphetic pitch of . . . , A[0, A0, A]0, . . . to be 0, so that
middle C has a morphetic pitch of 23.
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time bars), and its first note is E2, or MPN 48. The movement ends on bar 293, beat
3, ontime 891, with a five-note chord, of which the top three notes are B3, E4, and
G]4, or MPNs 59, 62, and 64 respectively.

In what follows, we want to be able to perform matching that is invariant to
time-shifting, time-scaling, transposition, or any combination of these operations, so
we will use triples of points (di,d j,dk) (where i, j and k are the indices of the points
in the lexicographically ordered dataset) such that:

1. the points are local, obeying i < j < k, with j− i < 5 and k− j < 5;
2. the ontimes are not simultaneous, i.e., xi 6= x j and x j 6= xk;
3. the ontimes are proximal, with x j− xi < 10 and xk− x j < 10; and
4. the MPNs are proximal, with y j− yi < 24 and yk− y j < 24.

These criteria were selected based on previous work (Arzt et al., 2012). A fingerprint—
that is, the information stored for each (di,d j,dk)—is a quadruple, 〈token, piece ID,
ontime, ontime difference〉, where each token is itself a triple:〈〈

y j− yi, yk− y j,
xk− x j

x j− xi

〉
︸ ︷︷ ︸

token

, “beethoven123”︸ ︷︷ ︸
piece ID

, xi︸︷︷︸
ontime

, x j− xi︸ ︷︷ ︸
ontime difference

〉
. (17.3)

For the three underlined points in (17.2), which form a legal triple according to
criteria 1–4 above, the fingerprint is〈〈

62−64, 60−62,
194 1

4 −193 1
4

193 1
4 −192 1

2

〉
, “beetOp109Mvt3”, 192 1

2 , 193 1
4 −192 1

2

〉

=

〈〈
−2, −2, 1 1

3

〉
, “beetOp109Mvt3”, 192 1

2 ,
3
4

〉
.

(17.4)

For each legal triple (di,d j,dk) in the point set D, a fingerprint is calculated and
stored in a so-called fingerprint database.

Given a query point set Q, which represents some known theme or otherwise-
interesting excerpt (from the same piece or from another piece), the fingerprint
database calculated over the point set D can be used to find ontimes t1, t2, . . . , tm in
D at which events similar to the query Q occur. First, it is necessary to calculate the
fingerprints of triples (qi,q j,qk) from Q, in an analogous fashion to the calculations
over D. Then tokens from the query are matched against tokens from the database.
When there is a match, the ontime ul of the matching fingerprint in the database and
the ontime vl of the matching fingerprint in the query are recorded as a pair (ul ,vl).
These ontimes are readily accessible, being stored as the third element in a fingerprint
(see (17.3)).

Let the set of ontime pairs of matching tokens be denoted

U(Q,D,α) = {(u1,v1),(u2,v2), . . . ,(uL,vL)} , (17.5)
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where α is a parameter to be described in due course.
If the piece contains a transformation of the query Q, then an arbitrary point q ∈Q

will be expressible as q = (axi +b,yi + c) for some (xi,yi) ∈ D, where a is the time
scale, b is the time shift, and c is the transposition. Substituting this expression for
some triple (qi,q j,qk) from Q in (17.3), these operations will cancel, and so the
query and database tokens will match:〈

(y j + c)− (yi + c), (yk + c)− (y j + c),
(axk +b)− (ax j +b)
(ax j +b)− (axi +b)

〉
=

〈
y j− yi, yk− y j,

xk− x j

x j− xi

〉
.

(17.6)

While being able to match queries to instances that have undergone such trans-
formations is useful, composers often write more complex variations of themes into
their works than can be expressed in terms of the transformations considered above
(i.e., time-shifting, time-scaling and transposition). As an example of more complex
variation, let us take the opening two bars of Beethoven’s op. 109, mvt. 3, as a query
(Fig. 17.3(a)), the transition into the complex variation shown in Fig. 17.3(b) as
database, and see what would be required to match the two via symbolic fingerprint-
ing. The query is

Q =
〈
(0,48),(0,59),(0,64),(1,50),(1,59),(1,62),(2,51),(2,60),(2 1

2 ,63),

(3,52),(3,56),(3,61),(4,53),(4,56),(4,58),(4,59),(5,54)
〉
.

(17.7)

Taking the underlined triple in (17.7), which corresponds to the underlined triple
in (17.2), the fingerprint token would be 〈−2,−2,1〉. Comparing with 〈−2,−2,1 1

3 〉
from (17.4), the disparity between the two is in the final element—the time difference
ratio of 1 in the query token versus 1 1

3 in the database token. If however, we permit
some percentage error, α = 40% say, when matching tokens’ time difference ratios,
then the query token 〈−2,−2,1〉 would be considered a match to the database token
〈−2,−2,1 1

3 〉, and the corresponding ontimes would be included in U from (17.5).
Plotted in Fig. 17.4(a) are the ontime pairs of matching tokens U(Q,D,α =

40) for the query Q from (17.7) and the point set D from (17.2). As there are
coincident points, we use marker size to indicate the relative number of matches at a
particular coordinate, with larger circles indicating more matches. The presence of
approximately diagonal lines in this plot means that there are multiple subsequent
matches between query and database (i.e., that there is a more or less exact occurrence
of the query in the database). Two such occurrences are indicated by the two thick
dashed transparent lines in Fig. 17.4(a). To summarize this plot properly, affine
transformations are applied to the points (indicated by the arrows and straight vertical
lines) and they are binned to give the histogram shown in Fig. 17.4(b). The histogram
shows two peaks—one at ontime 192 (or bar 33) and another around ontime 198 (bar
35). There is an occurrence of the theme from Fig. 17.3(a) at each of these times,



456 Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer

186, 31 189, 32 192, 33 195, 34 198, 35 201, 36

0

0.5

1

1.5

2

2.5

3

Ontime in Database, Bar Number

O
n
ti
m

e
 i
n
 Q

u
e
ry

186, 31 189, 32 192, 33 195, 34 198, 35 201, 36
0

5

10

15

20

25

30

Ontime in Database, Bar Number

N
u
m

b
e
r 

o
f 
M

a
tc

h
e
s

a

b

Fig. 17.4 (a) Plot of time stamps for matching query and database fingerprint tokens. Size of circular
markers indicates the relative number of matches coincident at a particular point, with larger circles
meaning more matches. Two occurrences of the query in the database are indicated by the two thick
dashed transparent lines. The arrows and straight vertical lines allude to an affine transformation.
(b) Fingerprint histogram indicating the similarity of the piece to the query as a function of time.
This plot results from application of an affine transformation to the points in Fig. 17.4(a), followed
by binning the transformed points to give the histogram. The rotation in the affine transformation is
influenced by the value of the ontime difference, stored as the final element of a fingerprint (see
(17.3), and, for more details, Arzt et al. (2012))
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subject to quite complex variation as shown in Fig. 17.3(b) (where red and blue
highlighting indicates likely contributors to the two peaks in the histogram).

In summary, symbolic fingerprinting can be used to identify occurrences of a
given query in a point-set representation of a piece. The stronger the resemblance
to the query at a particular time in the piece, the larger the number of matches
in a fingerprint histogram such as Fig. 17.4(b). In what follows, we refer to the
fingerprint histogram as f (t), and use it as a measure of the similarity of the piece
to the query as a function of time t. For the purposes of comparing different queries
and different pieces, it is also convenient to normalize the fingerprint histogram so
that the y-axis is in the range [0,1]. For the purposes of analysing occurrences of
a query across multiple pieces, we will also concatenate point sets D1,D2, . . . ,DN
representing N pieces into one point set D. That is, we set D = D1 and then for
i = 2, . . . ,N, the set Di is shifted to begin shortly after Di−1 ends, and then appended
to D. To distinguish between the fingerprint histogram for a query calculated over
some collection of pieces Θ = {D1,D2, . . . ,DN} as opposed to some other collection
Θ ′ = {D′1,D′2, . . . ,D′N′}, we will write fΘ (t) and fΘ ′(t) respectively.

Among the advantages of symbolic fingerprinting are its speed and robustness
(Arzt et al., 2012). As demonstrated, it is capable of identifying query occurrences that
have had time shift, time scale, and transposition applied, as well as more complex
transformations. Symbolic fingerprinting is not necessarily a definitive solution to the
problem of modelling perceived music similarity, however. For example, based on the
ontime-MPN representation, it is unlikely that the α-parameter could be increased
sufficiently to identify Lutes’ pattern occurrences without also returning many false
positive matches. The concision of the fingerprint histogram can also be a double-
edged sword. Especially with the α-parameter increased, sometimes there is a peak
in the histogram (say, at ontime 190 in Fig. 17.4(b)), but, when referring back to the
music, one is hard-pressed to justify the peak’s existence.

17.3.3 Calculating the Probability of a Pattern Occurrence

To develop geometric equivalents of the distinctiveness measure, given in (17.1), we
must be able to calculate the empirical probability of a given pattern occurrence in a
piece or across multiple pieces. Symbolic fingerprinting, described in the previous
section, will be central to this development. If we calculate fingerprints for a short
pattern occurrence, as well as fingerprints for a whole piece or collection of pieces,
it is possible to construct a histogram fΘ (t) measuring the similarity of the pattern
occurrence to the piece(s) as a function of time. Strong matches appear as large global
peaks in the histogram, whereas partial/weaker matches appear as smaller local peaks
or are indistinguishable from chance matches. Examples of such histograms are
given in Fig. 17.5. The dashed curve shows fΘ (t) for the query highlighted in red in
Fig. 17.3(a). Intuitively, this is quite a specific query, with a relatively low likelihood
of occurrence across Beethoven’s piano sonatas (apart perhaps from its host piece,
op. 109, mvt. 3). In accordance with this intuition, fΘ (t) for this specific query is
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Fig. 17.5 Fingerprint histograms fΘ (t) for a specific query (dashed blue line) and gΘ (t) for a generic
query (solid green line). The x-axis, time in the concatenated point set (database of Beethoven piano
sonatas), extends from the end of op. 10, no. 3, mvt. 1, continuing through op. 10, no. 3, mvt. 2, and
ending shortly after the beginning of op. 10, no. 3, mvt. 3

generally below the indicated similarity level of .5 in Fig. 17.5. For the sake of clarity,
the time axis in Fig. 17.5 is restricted to a subset of our database, beginning towards
the end of op. 10, no. 3, mvt. 1, continuing through op. 10, no. 3, mvt. 2, and ending
shortly after the beginning of op. 10, no. 3, mvt. 3. Beyond op. 109, mvt. 3, two
strong occurrences of the specific query stand out, in bars 18 and 20 of op. 10, no. 3,
mvt. 3 (see arrow on the right of Fig. 17.5 and Fig. 17.3(c)).

The solid green curve, gΘ (t), in Fig. 17.5 is the fingerprint histogram for a query
consisting of a seven-note descending scale. Intuitively, this is quite a generic query,
with a relatively high likelihood of occurrence across Beethoven’s piano sonatas.
That is, whilst listening to or studying Beethoven’s piano sonatas, we would not be
particularly surprised if a descending scale or scale fragment appeared. In accordance
with this intuition, gΘ (t) for the generic query in Fig. 17.5 is most often above
fΘ (t)for the specific query, and also quite often above the indicated similarity level
of .5. A descending scale in the recapitulation of op. 10, no. 3, mvt. 1, is particularly
noticeable (see arrow on the left of Fig. 17.5), but multiple other descending scale
figures occur across these movements. Even though the generic query contains more
notes than the specific query, the former appears to have a higher likelihood of
occurrence than the latter.

In this chapter we use the superlevel set of a fingerprint histogram fΘ (t) to
formalize the intuitive sense of a query point set’s likelihood. The superlevel set of
fΘ (t) is defined by

L+
c ( fΘ ) = {t | fΘ (t)≥ c} , (17.8)
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which is the set of timepoints for which the histogram is equal to or exceeds some
threshold similarity level c. The cardinality of the superlevel set (the number of
timepoints it contains), divided by the total number of timepoint bins in the histogram,
denoted |L+

0 ( fΘ )|, can be used as a proxy for the empirical probability of observing
the pattern occurrence across some piece or pieces.

Returning to the example queries and histogram excerpts shown in Fig. 17.5, the
superlevel set (with parameter c = .5) for the specific query contains 638 timepoints,
out of a total 13,003 timepoint bins. Thus the specific query has an empirical likeli-
hood of |L+

.5( fΘ )|/|L+
0 ( fΘ )|= 638/13,3003 = .049. Meanwhile, the more generic

query has an empirical likelihood of |L+
.5(gΘ )|/|L+

0 (gΘ )| = 1,345/13,003 = .103.
Thus the empirical likelihoods confirm our intuition: the highlighted note collection
in Fig. 17.3(a) is less likely to occur in Beethoven’s piano sonatas than a seven-note
descending scale.

But what about distinctiveness? To bring this section to its natural conclusion, we
turn back to Sect. 17.3.1 on distinctiveness, and substitute the above likelihoods into
(17.1), writing

p(P |Θ) = |L+
c ( fΘ )|/|L+

0 ( fΘ )| , (17.9)

where P is a point set representing some query, Θ is a collection of pieces in point-set
representations, and fΘ (t) is the fingerprint histogram of P across Θ . To measure
how distinctive some pattern P is of some corpus Θ , relative to some anticorpus Θ ′,
it follows that we can use

d(P,Θ ,Θ ′) =
|L+

c ( fΘ )|× |L+
0 ( fΘ ′)|

|L+
c ( fΘ ′)|× |L+

0 ( fΘ )| . (17.10)

To avoid division by zero, we set |L+
c ( fΘ ′)| equal to a minimum of 1.5 Completing the

worked example, we can take Chopin’s piano sonatas as an anticorpus, and calculate
the distinctiveness of the specific and generic patterns for Beethoven’s piano sonatas,
relative to Chopin’s.6 The specific query has empirical likelihood of .075 in Chopin’s
piano sonatas, and so the distinctiveness of the specific query for Beethoven’s piano
sonatas relative to Chopin’s is .049/.075 = .660. The generic query has empirical
likelihood of .117 in Chopin’s piano sonatas, and so the distinctiveness of the generic
query is .103/.117 = .887. Importantly, this example demonstrates that specificity
and distinctiveness are not the same thing. According to intuition, the specific query
has lower probability of occurrence in Beethoven’s piano sonatas than the generic
query. The specific query does not appear to be more distinctive of Beethoven’s
sonatas than the generic descending scale, however. This is because the specific query
has a relatively high likelihood of occurrence in Chopin’s compared to Beethoven’s
sonatas (cf. .075 and .049), and so its distinctiveness is low. Distinctiveness values

5 Division by zero arises if L+
c ( fΘ ′ ) is empty, either because c is too high and/or fΘ ′ too low

(Conklin, 2010).
6 Chopin’s sonatas are: op. 4, mvts. 1–4; op. 35, mvts. 1–4; and op. 58, mvts. 1–4. It is worth noting
that even though there are allusions to Beethoven in these works (cf. Chopin, op. 35, mvt. 1, and
Beethoven, op. 111, mvt. 1), the focus in this chapter is Beethoven–Beethoven resemblances, not
Chopin–Beethoven resemblances.



460 Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer

greater than one indicate that a pattern is more probable in the corpus than the
anticorpus, and so more distinctive of the corpus.

Choice of anticorpus will affect the results, so, for the first time here, we consider
the impact of this choice by reporting results for a second anticorpus also: Chopin’s
mazurkas.7 These corpora (21 Beethoven sonata movements, twelve Chopin sonata
movements, 49 Chopin mazurkas) may appear to differ in size, but they are compara-
ble (to within 1,000) in terms of number of notes.

17.4 Experimental Results

Although we were not necessarily expecting to detect instances of literal borrowing
across Beethoven’s piano sonatas (because they are not already known, suggesting
perhaps there are none), it is prudent to at least check. Experiment 1 was designed
primarily with this aim in mind. Experiment 2 increased the temporal inexactness
parameter α to investigate less literal resemblances, and Experiments 3 and 4 were
similar to 1 and 2 but for melodic rather than polyphonic queries. The last two
experiments apply a pattern discovery algorithm SIARCT-CFP (Collins et al., 2013)
to pairs of Beethoven sonata movements to find—in an unsupervised manner—inter-
opus resemblances between note collections (Experiment 5) and chord sequences
(Experiment 6). Apart from discovering resemblances, the experimental results also
shed some light on: (1) patterns that are distinctive of Beethoven’s piano sonatas
compared to Chopin’s; (2) whether thematic material is inherently more distinctive
than excerpts drawn from elsewhere in a movement; and (3) the impact of anticorpus
choice.

17.4.1 Experiment 1

In Experiment 1, we defined twelve-note queries using the full polyphonic represen-
tation of each movement, beginning at the start of each bar. This method of query
definition is not exhaustive: if there are more than twelve notes in a given bar, then
some content will be overlooked. Nor is the method always musically appropriate: if
some phrase begins with an upbeat and/or contains fewer/more than twelve notes,
then this will not be segmented appropriately. Taking a fixed number of notes is
preferable, however, to taking a fixed time window and the (variable) number of notes
appearing in this window, because the latter leads to variable-length queries, which
could introduce biases in similarity calculations. In any case, our fixed-length queries
are only intended to identify the kernel of some inter-piece resemblance, and then
we can review the excerpts in question, to hear/see whether the resemblance extends

7 Chopin’s mazurkas include the following: op. 6, nos. 1–4; op. 6, nos. 1–4; op. 7, nos. 1–5; op. 17,
nos. 1–4; op. 24, nos. 1–4; op. 30, nos. 1–4; op. 33, nos. 1–4; op. 41, nos. 1–4; op. 50 nos. 1–3;
op. 56, nos. 1–3; op. 59, nos. 1–3; op. 63, nos. 1–3; op. 67, nos. 1–4; and op. 68 nos. 1–4.
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Fig. 17.6 (a) Bars 64–70 of the third movement from Piano Sonata in F minor, op. 2, no. 1, by
Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 1–10.1 with upbeat of
the first movement from Piano Sonata in D major, op. 10, no. 3, by Beethoven. One occurrence of a
twelve-note pattern is highlighted, indicating a second occurrence of the pattern from Fig. 17.6(a)

over a longer time period, and to consider other contextual factors that need to be
taken into account. In inter-opus pattern discovery in general, rarely will it suffice to
present the algorithm output and say nothing more. Reviewing and interpreting the
excerpts in question are vital steps towards producing a musical analysis.

Each twelve-note query was subject to fingerprinting analysis against the database
of Beethoven piano sonata movements (as well as two anticorpora— Chopin’s piano
sonatas and mazurkas). Taking the fingerprint histogram f (t) calculated for a query
over the Beethoven piano sonata movements (see Sect. 17.3.2), we could determine
the location of the strongest match to the query (other than in the piece where the
query originated), as well as the strength of this strongest match. Queries that provide
strong matches to segments from other movements may indicate instances of literal
borrowing. The strongest-matching query to a segment from another movement is
indicated in Fig. 17.6, and some summary statistics for the pattern, labelled A1 and
A2, are given in Table 17.1.

As alluded to above, it so happens that A1 and A2 comprise the kernel of resem-
blance that extends over a longer time period: bars 65–66 of Fig. 17.6(a) appear in
bars 5–7 of Fig. 17.6(b). The query alone is not particularly distinctive, consisting
of a first-inversion triad played at successively lower scale steps twice and then one
scale step higher. It is more interesting, however, that the resemblance between the
two pieces extends over two bars in the first instance and three bars (because of
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Table 17.1 Distinctiveness of Beethoven patterns relative to two anticorpora

Figure Label Anticorpus of
Chopin Sonatas

Anticorpus of
Chopin
Mazurkas

Query Definition,
Time Tolerance α =

17.6(a), 17.6(b) A1, A2 0.430 1.376 Polyphonic segment, 15%
17.7(a), 17.7(b) B1, B2 0.476 1.188 Polyphonic segment, 15%
17.7(c), 17.7(d) C1, C2 0.536 3.557 Polyphonic segment, 15%
17.8(a), (b) E1, E2 0.799 1.870 Polyphonic segment, 40%
17.8(c), (d) F1, F2 0.660 0.957 Polyphonic segment, 40%
17.9(a), 17.9(b) G1, G2 12.880 2.084 Melodic segment, 15%
17.3(a), 17.3(c) H1, H2 0.660 1.953 Melodic segment, 15%
17.10(a), 17.10(b) I1, I2 2.036 4.305 Melodic segment, 40%
17.9(a), 17.9(c) J1, J2 5.400 8.663 Note discovery, 15%
17.11(a), 17.11(b) K1, K2 0.193 44.101 Note discovery, 15%
17.2(a), 17.11(c) M1, M2 41.092 78.121 Note discovery, 15%
17.12(c), 17.12(d) N1, N2 1.515 2.544 Chord discovery, 15%

the differing time signature) in the second instance. Of what does this extended
resemblance consist? The extension consists of A1 heard twice more at successively
lower scale steps. In op. 2, mvt. 3, this causes a strong hemiola effect, with six beats
of music being perceived as three groups of two (as opposed to the prevailing two
groups of three). Beethoven arrives on chord V in bar 67, V7 in bar 69, and then
the theme from the trio returns with chord I in bar 70 (Barlow and Morgenstern,
1948). The context of the borrowing in op. 10, no. 3, mvt. 1, is different. According to
Barlow and Morgenstern (1948), the theme of op. 10, no. 3, mvt. 1, covers bars 1–4.1
with upbeat. Bar 5 with upbeat is likely heard as a variation of the theme’s opening,
with the melody D–C]–B–A in both cases. Therefore, the instance of borrowing in
op. 10, no. 3, mvt. 1, has a different function from that in op. 2, no. 1, mvt. 3. In
op. 10, no. 3, mvt. 1, it is a variation of the theme, followed by a perfect cadence in
bars 9.2–10.1. Taken as a whole, bars 5–10.1 with upbeat act as a consequent to the
antecedent of bars 1–4.1 with upbeat, with bars 1–4.1 concluding on scale degree 5̂.

As we did not expect to find instances of inter-piece resemblance stretching 2–
3 bars, the result shown in Fig. 17.6 is surprising and, to our knowledge, novel.
Other results from the first experiment did not extend to create a longer period of
resemblance, but two more are included in Table 17.1 (labelled B and C) and given
in Fig. 17.7. The third movement of op. 2, no. 1, features in all three patterns A,B,C,
suggesting it contains a stock of patterns—albeit not particularly distinctive according
to Table 17.1—that appear in later compositions.
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Fig. 17.7 (a) Bars 1–5 with upbeat of the third movement from Piano Sonata no. 1, in F minor,
op. 2, no. 1, by Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 8–10 of
the first movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One occurrence
of an eleven-note pattern is highlighted, indicating a partial second occurrence of the pattern from
Fig. 17.7(a). (c) Bars 24–28.1 of the third movement from Piano Sonata no. 1 in F minor, op. 2, no. 1,
by Beethoven. One occurrence of a twelve-note pattern is highlighted. (d) Bars 15–16 of the fourth
movement from Piano Sonata no. 7 in D major, op. 10, no. 3, by Beethoven. One occurrence of a
twelve-note pattern is highlighted, indicating a second occurrence of the pattern from Fig. 17.7(c)

17.4.2 Experiment 2

The previous experiment aimed towards identifying instances of literal repetition
or borrowing between movements, so in that experiment it was sensible to keep the
temporal inexactness parameter α quite low (α = 15%). As symbolic fingerprinting
can be used to identify non-rigid variations such as between Fig. 17.3(a) and (b),
however, in the second experiment, α is increased to 40% to enable such discoveries.
Everything else from Experiment 1 is kept the same.

Many of the patterns discovered in Experiment 2 were similar to or the same as
those discovered in Experiment 1. But beyond these, two examples of the inexact inter-
opus patterns discovered in Experiment 2 are given in Fig. 17.8. Pattern occurrence
E1 in Fig. 17.8(a) consists of a rising major triad, F3, A3, C4, with each note played
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Fig. 17.8 (a) Bars 1–5 with upbeat of the third movement from Piano Sonata no. 6 in F major, op. 10,
no. 2, by Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 172–173
of the third movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One inexact
occurrence of the pattern from Fig. 17.8(a) is highlighted. (c) Bars 47–50 of the second movement
from Piano Sonata no. 6 in F major, op. 10, no. 2, by Beethoven. One occurrence of a twelve-note
pattern is highlighted. (d) Bars 1–4 with upbeat of the third movement from Piano Sonata no. 12
in A[ major, op. 26, by Beethoven. One inexact occurrence of the pattern from Fig. 17.8(c) is
highlighted

three times following a lower member of the triad. In occurrence E2 (Fig. 17.8(b)),
the three notes are D]5, F]5, A5, with each note played twice, and on this occasion
they form the upper three notes of a dominant seventh chord that has B1 in the bass.
There are fewer notes in E2 than in E1, and the time difference ratios between triples
of notes in each occurrence are not always the same, but with α = 40% the two
occurrences bear sufficient resemblance to cause a local maximum in the fingerprint
histogram. The same observation applies to pattern occurrences F1 (Fig. 17.8(c)) and
F2 (Fig. 17.8(d)). This pattern consists of a chordal progression, with each occurrence
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having very similar voice-leading. The progression is I, I, Vb in Fig. 17.8(c), and i, i,
V7b in Fig. 17.8(d).
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G 1

G 2

J 1

J 2

Fig. 17.9 (a) Bars 122–137.1 of the first movement from Piano Sonata no. 7 in D major, op. 10,
no. 3, by Beethoven. One occurrence of a six-note pattern is highlighted in red. A different nineteen-
note pattern is highlighted in blue. (b) Bars 43–44 of the second movement from Piano Sonata no. 7
in D major, op. 10, no. 3, by Beethoven. One inexact occurrence of the pattern from Fig. 17.9(a) is
highlighted. (c) Bars 54–57.2 of the first movement from Piano Sonata no. 1 in F minor, op. 2, no. 1,
by Beethoven. A second occurrence of the nineteen-note pattern from Fig. 17.9(a) is highlighted
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17.4.3 Experiment 3

Since Handel sometimes borrowed melodies rather than full textures (see Sect. 17.1),
it is sensible to make the same checks for Beethoven. Accordingly, Experiment 3
consisted of a melodic version of Experiment 1. We defined six-note queries using the
highest-sounding notes in the right hand, beginning at the start of each bar. Everything
else from Experiment 1 is kept the same.

The pattern H1 from Fig. 17.3(a), recurring as H2 in Fig. 17.3(c), is among
the results of this experiment. In op. 109, mvt. 3, H1 is the opening of a theme
and variations. In op. 10, no. 3, mvt. 3, H2 is imitative, passing between left and
right hands at the beginning of the second section of the minuet. According to
Table 17.1, however, pattern H1 is not particularly distinctive of Beethoven’s sonatas
(d = .660) compared, say, to pattern occurrences G1 and G2 from Figs. 17.9(a) and
(b), respectively (d = 12.880). The leap of six scale steps E3 to D4 in G1 is the reason
for this pattern’s high distinctiveness. In op. 10, no. 3, mvt. 1, the first three notes of
G1 belong to a lower-octave repetition of the development’s opening (see bar 125
with upbeat of Fig. 17.9(a)). This is the opening theme beginning on scale degree
5̂ instead of the original 1̂ (see Fig. 17.6(b)). The last three notes of H1 belong to a
minor statement of the opening theme, now beginning again on 1̂. Beethoven reuses
these three-note scale fragments separated by a leap of six scale steps in the second
movement of the same piece (Fig. 17.9(b)), just before the return of the main theme.

a

b

I 1

I 2

Fig. 17.10 (a) Bars 152–157 of the first movement from Piano Sonata no. 12 in A[ major, op. 26,
by Beethoven. One occurrence of a six-note pattern is highlighted. (b) Bars 126–128 of the third
movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One inexact occurrence of
the pattern from Fig. 17.10(a) is highlighted
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17.4.4 Experiment 4

Just as with Experiment 2, where we increased the temporal inexactness parameter of
Experiment 1 from α = .15 to α = .4 to enable discovery of more complex variations
on a pattern, so we did for melodic queries in Experiment 4. Many of the patterns
discovered in Experiment 4 were similar to those discovered in Experiment 3, but
an example of an additional pattern discovered in Experiment 4 is given as I1 and
I2 in Fig. 17.10. Just as G1 (Fig. 17.9(a)) was distinctive due to a large leap, so I1
contains two compound sevenths. The inexactness of the relationships between notes
belonging to I1 and I2, added to the large number of interpolated notes in I2, make
the resemblance between these passages difficult to discern. This was often the case
for results from Experiment 4, inviting the observation that α = 40% may be too
high for melody-only queries.

Coming to the end of our experiments involving fixed-length queries, we address
the issue of whether thematic material is inherently more distinctive than excerpts
drawn from elsewhere in a movement. In each of the 21 Beethoven movements
selected, it is the case that the first theme as annotated by Barlow and Morgen-
stern (1948) begins in bar 1. Therefore, to address the issue, we can calculate the
distinctiveness of the opening six-note query from each movement, and compare
this value to the distinctiveness of some other six-note query selected at random
from the same movement. This procedure can be simulated many times for each
movement to derive a proportion ρ of the times that the distinctiveness values of
themes are significantly higher than those of randomly-selected queries. If a query
Q belongs to piece Di, then it makes sense to set the corpus Θ from (17.1) to this
piece, Θ = {Di}, and the anticorpus Θ ′ to all other Beethoven movements apart from
this piece, Θ ′ = {D1,D2, . . . ,Di−1,Di+1, . . . ,D21}. Then d(Q,Θ ,Θ ′) indicates how
distinctive the query Q is for piece Di, relative to its prevalence in other movements.

Following this procedure for α = 15% and 1,000 simulations, we found that
only on 18 occasions (ρ = 1.8%) was distinctiveness of themes significantly higher
according to the Wilcoxon signed-rank test than distinctiveness of queries selected
at random from elsewhere in the same piece. The proportion ρ was still small
(i.e., always below 5%), whether using α = 40%, twelve-note polyphonic queries,
or Chopin as the anticorpus instead of other Beethoven movements. These results
suggest that Beethoven’s thematic material is not more distinctive of his style—at
least quantitatively—compared to excerpts drawn from elsewhere in a movement.

17.4.5 Experiment 5

In the last two experiments reported in this chapter, we move away from predefined,
fixed-length queries, and toward queries generated in an unsupervised manner by
running the pattern discovery algorithm SIARCT-CFP (Collins et al., 2013) on
concatenated pairs of movements D = conc(Di,D j), where 1≤ i, j,≤ 21. That is, for
instance, when running SIARCT-CFP on a point set consisting of the concatenation
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Fig. 17.11 (a) Bars 103–107 with upbeat of the first movement from Piano Sonata no. 12 in A[
major, op. 26, by Beethoven. One occurrence of a 28-note pattern is highlighted. (b) Bars 41–44
of the third movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. A second
occurrence of the pattern from Fig. 17.11(a) is highlighted. (c) Bars 9–11 of the second movement
from Piano Sonata no. 7 in D major, op. 10, no. 3, by Beethoven. A second occurrence of the pattern
from Fig. 17.2(a) is highlighted (in red)

of op. 10, no. 3, mvt. 1, and op. 2, no. 1, mvt. 1, the pattern occurrences labelled
J1 (Fig. 17.9(a)) and J2 (Fig. 17.9(c)) are discovered, and we can calculate the
distinctiveness of all such output patterns. Until recently, it would not have been
feasible to run geometric pattern discovery algorithms across all pairs of movements
from a 21-piece corpus, but Collins (2011) introduced a parallel version of SIA
(Meredith et al., 2002) called SIAR, whose runtime reduces with the number of
available processors.

Pattern occurrences J1 and J2 provide a kernel of resemblance that could point
to a more pervasive Beethovian stylistic trait: both bars 133–137.1 of Fig. 17.9(a)
and bars 55-57.1 of Fig. 17.9(c) consist of alternating octave eighth notes in the left
hand; both consist of a global descending melodic contour in the right hand with
a concluding upturn; both involve dynamic emphases at beginning and end; both
excerpts appear early on in the development sections of op. 10, no. 3, mvt. 1, and
op. 2, no. 1, mvt. 1 (although the latter has been heard before as the second theme).
So it would be interesting to know whether further instances appear in other pieces
by Beethoven, Haydn, etc. Potentially, this could be an example of a new Beethovian
developmental schema.

Similar remarks about schematic potential could be made regarding K1
(Fig. 17.11(a)) and K2 (Fig. 17.11(b)), since both constitute chordal textures in
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theme and variations movements. An interesting aspect of this pattern is that while it
does not appear to be distinctive of Beethoven’s piano sonatas relative to Chopin’s
(d = 0.193 in Table 17.1), it is distinctive of Beethoven’s sonatas relative to Chopin’s
mazurkas (d = 44.092). This trend in distinctiveness values was present across many
discovered patterns (e.g., see M1 and M2 in Table 17.1 and Figs. 17.2(a) and 17.11(c)
respectively), but it was most marked for K1,K2. Overall, the choice of anticorpus
does not seem to create too much volatility in results: if pattern X has distinctiveness
dX for the Chopin sonata anticorpus and eX for the Chopin mazurka anticorpus,
pattern Y has distinctiveness dY for the Chopin sonata anticorpus and eY for the
Chopin mazurka anticorpus, and there is some distinctiveness ordering for one of
the anticorpora (e.g., dX < dY ), then apart from a couple of exceptions in Table 17.1,
this ordering holds also for the other anticorpus (e.g., eX < eY ).

17.4.6 Experiment 6

The final experiment explored a new representation in the context of pattern discovery:
geometric encoding of chord symbols. To create such a representation, the HarmAn
algorithm (Pardo and Birmingham, 2002) was run on all pieces in our database.
For given symbolic note input, HarmAn produces ontimes of chord labels, the root
pitch classes, chord types, chord durations, and ratings of the confidence with which
each label was assigned. It does not take into account modulations, inversions, or
functional harmonic labels. Focusing on chord ontimes and root pitch classes, an
example of HarmAn output is shown in Fig. 17.12(b) for the input of Fig. 17.12(a).
SIARCT-CFP was used to identify collections of points that occur repeated and/or
varied in the ontime-root space of Fig. 17.12(b), just as it had done in ontime-MPN
space for Experiment 5.

An example of the type of harmonic pattern discovered is given in Figs. 17.12(c)
and (d), where chord labels have been converted manually to Roman numerals for
clarity. Both N1 (Fig. 17.12(c)) and N2 (Fig. 17.12(d)) begin by moving from i to V
and back to i. Whereas N2 then mimics this movement to reach the dominant minor
(V, II, v), in N1 the pattern occurrence finishes on V7 and then cadences back on to
i a bar later. Pattern discovery on a large scale in this harmonic space is still in its
infancy, because robust algorithms capable of labelling chords to the standard of a
human expert still do not exist (Collins, 2014).

17.5 Conclusions and Future Work

This chapter has described a computational method for discovering resemblances
between excerpts from different pieces of polyphonic music, and summarized the
results of this method applied to a collection of piano sonatas by Beethoven. The
method combines formulae for calculating the distinctiveness of repeating patterns—
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Fig. 17.12 (a) Bars 1–8.1 with upbeat of the first movement from Piano Sonata no. 1 in F[ minor,
op. 2, no. 1, by Beethoven. (b) Plot of root pitch class against ontime of chords, as estimated by
the HarmAn algorithm. (c) Bars 72–77 of the first movement from Piano Sonata no. 6 in F major,
op. 10, no. 2, by Beethoven. An occurrence of a six-chord pattern is highlighted below the staff.
(d) Bars 18–22 of the first movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven.
A second occurrence of the six-chord pattern from Fig. 17.12(c) is highlighted. Chord labels were
converted to Roman numerals in these plots to aid comparison
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developed in the viewpoint approach to pattern discovery—with representations that
apply conveniently to melodic or polyphonic (voiced or unvoiced) representations—
developed in the geometric approach to pattern discovery. The combination or unifi-
cation was made possible by symbolic fingerprinting, which enabled us to estimate
the likelihood of occurrence of a music query across a piece or database of pieces.

Of particular interest among the results was an instance of literal resemblance be-
tween op. 2, no. 1, mvt. 3 and op. 10, no. 3, mvt. 1 (Fig. 17.6), a melodic resemblance
between an andante theme in op. 109, mvt. 3 and an imitative passage in the minuet,
op. 10, no. 3, mvt. 3 (Fig. 17.3), and two new candidates for schemata (Figs. 17.9 and
17.11). A quantitative analysis of the distinctiveness of Beethoven’s thematic material
versus material drawn from elsewhere in the same pieces found that the themes are
not significantly more distinct. One should be wary of interpreting null effects, but
this result is perhaps not so surprising when one considers the content of Beethoven’s
motivic designs. For instance, the themes in both Figs. 17.8(a) and 17.12(a) consist
of rising triadic pitches followed by a descending scale fragment. Such musical
building blocks have relatively high likelihood across many corpora, and so may not
be distinctive of Beethoven. Based on this result, we might tentatively suggest that
the apparent bias in existing analytic work toward discussing incipits and themes
could be due to cognitive load (easier to remember and maintain incipits and themes
than entire movements) rather than this material being particularly distinctive of a
composer’s style. Computational music analysis may serve to democratize intra- and
inter-opus pattern discovery somewhat, giving equal consideration to less well-known
passages from longer pieces, which could lead to interesting new findings.

At the beginning of the chapter, we stated that computational methods exist capa-
ble of discovering the type of melodic resemblance shown in Fig. 17.1, but that no
computational method exists capable of identifying the more abstract resemblances
in Fig. 17.2. As yet, therefore, music informaticians have not developed sufficiently
flexible methods for identifying the types of patterns that musicologists find interest-
ing (Burkholder, 2001; Byros, 2012; Gjerdingen, 1988, 2007; Lutes, 1974; Radcliffe,
1968; Winemiller, 1997). The method proposed and applied in the current chapter
has made some progress in this regard, because it can handle melodies as well as any
sort of polyphonic texture, and it addresses the interpolation and zero-order problems,
which are simplifying and problematic assumptions about the nature of music made
by previous approaches. If, however, the temporal inexactness parameter α of our
fingerprinting method is increased to the point where occurrences of schema such
as in Fig. 17.2 become detectable, then many false positive results are returned also.
The method proposed in the current chapter is not a complete solution, therefore, and
one idea for future work would be to query point-set representations of notes and
chord labels simultaneously, to help filter out the number of false positives resulting
from increases in the inexactness parameter.

Taking a step back, a more fundamental suggestion for future work is to cre-
ate high-quality encodings in kern or MusicXML format, synchronized to audio
recordings, of specific works that can support computational research into borrowing
and distinctive pattern discovery. For instance, while there are a good number of
Handel’s works available in kern format, there are far fewer encodings of works by
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contemporaries such as Keiser, let alone encodings of human-annotated instances
of borrowing between these works. If we want to rigorously evaluate methods for
identifying borrowing and resemblances—so that these methods can be applied
more widely and with more confidence to other music—then testing against known
instances of borrowing is a sensible first step. This testing requires that digital en-
codings of specific works and annotations of those works exist. Synchronizing audio
recordings achieves two things: first, while it may sound trivial, it makes browsing
of the discovered patterns a far more enjoyable process, because the researcher can
listen to a human performance while doing so, rather than, say, inspecting piano-roll
plots without sound or (possibly worse for some individuals) listening to mechanical
MIDI files. This is important when trying to engage musicologists with the technol-
ogy. Second, if audio and symbolic representations of a piece are synchronized, and
there exist expert music-theoretical annotations of the symbolic data (e.g., functional
harmonic analyses, cadence locations, textural categories, occurrences of schemata,
occurrences of motifs, themes, and other repetitive elements), then via the synchro-
nization this can act as a ground truth for evaluating audio-based algorithms (in
addition to symbolic-based algorithms) that attempt to produce these annotations
automatically.

We would like to see more joint work between technologists and musicologists
on the development of interfaces that make it possible to run and browse the output
of such algorithms across corpora and for representations of interest. The results
presented in this chapter suggest that our knowledge about music can be advanced
by computational music analysis—the extent to which it will be advanced in coming
decades depends on researchers in music informatics getting to grips with some
higher-level music-theoretic concepts, and musicologists being prepared to help
guide and engage with this work.

Acknowledgements We are grateful to KernScores (http://kern.ccarh.org/) for hosting high-
quality symbolic music data. The musical figures in this chapter were made using MuseScore
(http://musescore.org/). We are grateful to three reviewers for their comments on an earlier version
of the manuscript, and to Kerstin Neubarth for additional insightful remarks.

Supplementary Material See http://www.tomcollinsresearch.net for code and data in support of
the research reported in this chapter.

References
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