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ABSTRACT

Guitar solos provide a way for guitarists to distinguish
themselves. Many rock music enthusiasts would claim to
be able to identify performers on the basis of guitar solos,
but in the absence of veridical knowledge and/or acousti-
cal (e.g., timbral) cues, the task of identifying transcribed
solos is much harder. In this paper we develop methods
for automatically classifying guitarists using (1) beat and
MIDI note representations, and (2) beat, string, and fret
information, enabling us to investigate whether there ex-
ist “fretboard choreographies” that are specific to certain
artists. We analyze a curated collection of 80 transcribed
guitar solos from Eric Clapton, David Gilmour, Jimi Hen-
drix, and Mark Knopfler. We model the solos as zero
and first-order Markov chains, and do performer predic-
tion based on the two representations mentioned above,
for a total of four classification models. Our systems pro-
duce above-chance classification accuracies, with the first-
order fretboard model giving best results. Misclassifica-
tions vary according to model but may implicate stylistic
differences among the artists. The current results confirm
that performers can be labeled to some extent from sym-
bolic representations. Moreover, performance is improved
by a model that takes into account fretboard choreogra-
phies.

1. INTRODUCTION

Avid listeners of rock music claim they can easily distin-
guish between a guitar solo by Jimi Hendrix versus Jimmy
Page. This raises many questions about the types of fea-
tures underlying such a task. For example, can artist iden-
tification of guitar solos be performed successfully from
compositional features alone; or are other performance and
timbral cues required?

Artist identification is an established research topic in
Music Information Retrieval (MIR). Timbral features ex-
tracted from audio representations have been used for artist
recognition [1–3] and for singer identification in popular
music [4, 5].

Identification of artists/composers from symbolic repre-
sentations (digital encodings of staff notation) has also
been attempted [6–11]. Kaliakatsos-Papakostas et al. used
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a weighted Markov chain model trained on MIDI files for
composer identification [8], as well as feedforward neural
networks [12]. Markov models have been used to distin-
guish between Mozart and Haydn [9]. Existing work on
feature extraction from symbolic music is extremely valu-
able for such a classification task. For example, Pienimaki
et al. describe an automatic cluster analysis method for
symbolic music analysis [13], while Collins et al. propose
computational methods for generating music in the style of
various composers [14, 15].

Past studies have modeled rhythm and lead content of
guitar parts. Of particular relevance is work by McVicar et
al. [16–18], in which models are trained to emulate playing
styles of various guitarists such as Jimi Hendrix, Jimmy
Page, and Keith Richards. The output is a stylistic gener-
ation of rhythm and lead guitar tablature based on string
and fret rather than staff notation representations. It is
unknown, however, whether this choice of representation
confers any analytic or compositional advantage. A single
MIDI note number (MNN) can be represented by several
different (string, fret)-pairs on the fretboard, and it could
be that such choices vary systematically from one artist to
another. Methods for separating voices in lute tablature
seemed to benefit from such a tablature-based representa-
tion [19].

In addition, Ferretti has modeled guitar solos as directed
graphs and analyzed them with complex network theories
to yield valuable information about playing styles of mu-
sicians [20]. Another study by Cherla et al. automatically
generated guitar phrases by directly transcribing pitch and
onset information from audio data and then using their
symbolic representations for analysis [21].

To our knowledge, the task of identifying artists from gui-
tar solos has not been attempted previously. Furthermore,
McVicar et al.’s [18] work raises the question of whether
fretboard representations are really more powerful than
staff notation representations and associated numeric en-
codings (e.g., MIDI note numbers). In support of McVicar
et al.’s [18] premise, research in musicology alludes to spe-
cific songs and artists having distinctive “fretboard chore-
ographies” [22], but the current endeavor enables us to as-
sess such premises and allusions quantitatively.

Widmer [23] is critical of the prevalence of Markov
models in music-informatic applications, since such mod-
els lack incorporation of long-term temporal dependen-
cies that most musicologists would highlight in a given
piece. Collins et al. [15], however, show that embed-
ding Markov chains in a system that incorporates such
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long-term dependencies is sufficient for generating mate-
rial that is in some circumstances indistinguishable from
human-composed excerpts. Whether the zero and first-
order Markov models used in the present study are suf-
ficient to identify the provenance of guitar solos is de-
batable; however, we consider them a reasonable starting
point for the task at hand.

The rest of this paper is organized as follows. We de-
scribe the dataset and features, Markov models and maxi-
mum likelihood interpretations, and our classification pro-
cedure in Section 2. In Section 3 we visualize our data
and report classification results. We conclude in Section 4
with discussion of results, insights into stylistic differences
among the artists, potential issues, and avenues for future
research.

2. METHOD

2.1 Dataset

We collated our own dataset for the present study, since no
pre-existing dataset was available. First, we downloaded
guitar tabs in GuitarPro format from UltimateGuitar. 1 The
quality of tabs was assessed by us as well as the number
of stars they received from UltimateGuitar users. Any tab
with a rating below four stars was discarded. We then man-
ually extracted the guitar solos from each song’s score and
converted them to MusicXML format with the free Tux-
Guitar software. 2 In total, our final dataset comprised 80
solos—20 each from Eric Clapton, David Gilmour, Jimi
Hendrix, and Mark Knopfler. While the size of this dataset
is in no way exhaustive, the number of songs curated was
restricted by the availability of accurate tabs.

2.2 Representations

For parsing MusicXML data and symbolic feature extrac-
tion, we used a publicly available JavaScript library. 3 Us-
ing methods in this library, we wrote a script that returns
ontime (symbolic onset time), MIDI note number (MNN),
morphetic pitch number (MPN), note duration, string num-
ber, and fret number for each note in the solo. To obtain the
beat of the measure on which each note begins, we took its
ontime modulo the time signature of that particular solo.
The tonic pitch of each song was identified from the key
signature using an algorithm in the JavaScript library that
finds the tonic MIDI note closest to the mean of all pitches
in a song. We then subtracted this tonic MNN from each
raw MNN to give a “centralized MNN”, which accounted
for solos being in different keys. When calculating pitch
class, we took centralized MNN modulo 12 to limit values
to the range [0, 11].

For guitar players, fingering positions on the fretboard
are crucial. To account for variability in key along the fret-
board, solos were transposed to the nearest C major/A mi-
nor fretboard position on the same string, making sure
there were no negative frets. If a fret number was greater

1 https://www.ultimate-guitar.com/
2 https://sourceforge.net/projects/tuxguitar/
3 https://www.npmjs.com/package/maia-util

than or equal to 24 (the usual number of frets on an elec-
tric guitar), it was wrapped back around to the start of the
fretboard by a modulo 24 operation, resulting in the fret
range [0, 23]. The resulting dimensions of beat, MNN,
pitch class, string and transposed fret were saved in JSON
format for each song in the dataset. Finally, we generated
two types of tuples on a per-note basis as our state spaces:
the first state space comprises beat and centralized MNN,
denoted (beat, MNN) hereafter; the second comprises beat,
string, and transposed fret, denoted (beat, string, fret) here-
after. The quarter note is represented as a single beat. For
example, an eighth note played on the fifth fret of the sec-
ond string would be (0.5, 64) in the 2D (beat, MNN) rep-
resentation and (0.5, 2, 5) in the 3D (beat, string, fret) rep-
resentation.

2.3 Markov Model

A Markov model is a stochastic model of processes in
which the future state depends only on the previous n
states [24]. Musical notes can be modeled as random vari-
ables that vary over time, with their probability of occur-
rence depending on the previous n notes.

In the present classification paradigm, let xi represent a
state in a Markov chain at time instant i. In a first-order
Markov model, there is a transition matrix P which gives
the probability of transition from xi to xi+1 for a set of all
possible states. If {x1, x2, ...xN} is the set of all possible
states, the transition matrix P has dimensions N ×N .

Given a new sequence of states [x1, x2, ...xT ], we can
represent it as a path with a probability of occurrence
P (x1, ..., xT ). According to the product rule, this joint
probability distribution can be written as:

P (x1, ..., xT ) = P (xT |xT−1, ..., x1)P (x1, ..., xT−1)
(1)

Since the conditional probability P (xT |xT−1, ..., x1) in a
first-order Markov process reduces to P (xT |xT−1), we
can write:

P (x1, x2, ...xT ) = P (xT |xT−1)P (x1, x2, ..xT−1) (2)

Solving this recursively brings us to:

P (x1, x2, ...xT ) = P (x1)

T∏
i=2

P (xi|xi−1) (3)

Taking the log of P (x1, x2, ...xT ) gives us the log likeli-
hood, L1 defined as:

L1 = logP (x1) +

T∑
i=2

logP (xi|xi−1) (4)

Hence, the log likelihood can be calculated from the tran-
sition matrix P and initial distribution P (x1).

For a zero order Markov model, the joint distribution is
simply the product of the marginal distributions because
the present state is independent of any of the past states:

P (x1, x2, ...xT ) =

T∏
i=1

P (xi) (5)
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Therefore, the log likelihood is defined as

L0 =

T∑
i=1

logP (xi) (6)

2.4 Classification Procedure

For the present analysis, we performed classifications us-
ing a leave-one-out paradigm, i.e, we trained on all 79
songs except the song being classified, and repeated this
for all 80 songs in our dataset. 4 We used two differ-
ent state spaces in our analysis: the 2D state space com-
prising beat and MNN, and the 3D state space compris-
ing beat, string, and transposed fret. Each state in a state
space represents one note in a guitar solo. We then trained
zero-order and first-order Markov models on these data,
and used a maximum likelihood approach to classify each
song.

For zero-order models, a probability list was constructed
by obtaining the probability of occurrence of each unique
state in the training data. This was done empirically by
counting the number of times a unique state occurred, and
dividing this value by the total number of occurrences of
all states. A new set of states was obtained for an unseen
song, and their probabilities were individually looked up
in the probability list. If a state is previously unseen, we
give the probability an arbitrarily small value (0.00005) for
that state. The likelihood function L0 was calculated for
each artist, and the artist with maximum likelihood was
selected.

For first-order models, the transition matrix P for a par-
ticular guitarist was found by training on all songs played
by him except the song being classified. Once we com-
puted P for each guitarist, we calculated the probability of
finding the sequence of states observed in the unseen test
song for each artist, and chose the artist whose transition
matrix maximized the likelihood L1, according to

artist = arg max
a∈A

L0,1(a), (7)

where A = {Clapton,Gilmour,Hendrix,Knopfler}.
Under a null hypothesis of chance-level classification,
we assume a binomial distribution—having parame-
ters p = 1/nClasses (= 0.25), k = nSuccesses, and
n = nTrials (= 80)—for calculation of p-values. We
correct for multiple comparisons using False Discovery
Rate [25].

3. RESULTS

3.1 Data Visualization

3.1.1 Histograms

To better understand the choice of notes used by each gui-
tarist, we plotted pitch class and note duration histograms.
As shown in Figure 1, the pitch class distributions shed
light on certain modes and scales that are used most fre-
quently by the artists. For instance, the minor pentatonic

4 The dataset consisting of JSON files, code for classification and
analysis are all included in https://github.com/orchidas/
Guitar-Solo-Classification

scale (1, [3, 4, 5, [7) stands out prominently for all four
artists. It is also interesting to note that Eric Clapton uses
the 6th scale step more frequently than others. We per-
formed chi-squared tests on all pitch class distributions to
assess uniformity, with the null hypothesis being that the
pitch class distributions are uniform and the alternate hy-
pothesis being that they are not. The p-values were neg-
ligibly small, suggesting that none of the distributions are
uniform, but we report the χ2 statistic to see which distri-
butions are relatively more uniform. Eric Clapton had the
largest χ2 value (5561.4), followed closely by Jimi Hen-
drix (4992.8), and then David Gilmour (3153.8) and Mark
Knopfler (2149.7). A smaller chi-squared value indicates
less distance from the uniform distribution, providing evi-
dence that Knopfler is more exploratory in his playing style
because he makes use of a wider variety of pitch classes.
Note duration histograms indicate that all artists prefer the
sixteenth note (0.125) and the eighth note (0.5) except for
Knopfler, who appears to use more triplets (0.333, 0.167).
Knopfler’s exploratory use of pitch classes and triplets may
be related. He may use more chromatic notes in the triplets
to fill in the intervals between main beats. This could po-
tentially set him apart from the other guitarists.

3.1.2 Self-similarity Matrices

To observe similarity between artists, we calculate a self-
similarity matrix for each state space. To do so, we form
vectors for each artist, denoted by a(1), a(2), a(3), a(4),
with each element in the vector representing a (beat, MNN)
or (beat, string, fret) state. To define similarity between
artists, we use the Jaccard index [17]. Each element in the
similarity matrix S is given as:

Si,j =
|a(i) ∩ a(j)|
|a(i) ∪ a(j)|

(8)

where |.| indicates set cardinality. The self-similarity ma-
trices for both state spaces are shown in Figure 2. We
observe that similarity among artists is slightly lower
when we use a 3D state space with fretboard information.
Among the artists, we observe that the similarity between
Mark Knopfler and David Gilmour is highest, indicating
the possibility for confusion between these artists.

3.1.3 Markov Chains

In Figure 3, we show the transition matrices for each artist
as weighted graphs using R’s markovchain package [26].
The vertices represent states in the transition matrix and
edges represent transition probabilities. Sparsity is calcu-
lated as the ratio of number of zero entries to the total num-
ber of entries in the transition matrix. A combination of
high sparsity with a large number of vertices (more unique
states) indicates less repetition in the solos. While the de-
tails in these visualizations are not clear, some useful pa-
rameters of the graphs are given in Table 1. Although the
difference in sparsity is relatively small between artists,
it could play a significant role in classification. As ex-
pected, the transition matrices for the 2D state spaces are
less sparse than their 3D counterparts. The 2D state space
also contains fewer unique states, which makes intuitive
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Figure 1. Left: Normalized pitch class histograms. Right: Note duration histograms.

Figure 2. Artist self-similarity matrices. Left: State space of (beat, MNN). Right: State space of (beat, string, fret).

sense because a single MNN can be represented by sev-
eral different sets of (string, fret) tuples on the fretboard.
We observe that Hendrix has the largest number of unique
states and his transition matrix is sparsest, indicating that
he is least repetitive among the artists. Knopfler, on the
other hand, has fewer unique states and more transitions,
which means he repeats similar patterns of notes in his so-
los. It is curious how this analysis complements our in-
terpretation of the histograms—even though Knopfler was
shown to employ relatively unusual pitch and rhythmic ma-
terial in Section 3.1.1, the current analysis shows he does
so in a more repetitive manner, while Hendrix is vice versa.

3.2 Classification Results

We performed classification tests on four models:

• Zero-order model, state space of (beat, MNN);

• Zero-order model, state space of (beat, string, trans-
posed fret);

• First-order model, state space of (beat, MNN);

• First-order model, state space of (beat, string, trans-
posed fret).

Clapton Gilmour Hendrix Knopfler
Vertices 921 913 1751 889
Edges 3437 3616 5704 3564
Sparseness 0.9959 0.9956 0.9981 0.9955

Clapton Gilmour Hendrix Knopfler
Vertices 1443 1536 2679 1414
Edges 3817 4044 6241 4028
Sparseness 0.9981 0.9982 0.9991 0.9979

Table 1. Properties of transition matrices for (beat, MNN)
space (top) and (beat, string, fret) space (bottom).

The classification results and overall accuracy are given in
the four confusion matrices of Table 2. All classification
accuracies are significantly above chance at the .05 level
after correction for multiple comparisons. The first-order
Markov model with 3D state space (beat, string, transposed
fret) performs best, with a classification accuracy of 50%.
This confirms that a model comprising temporal informa-
tion and preserving fretboard information is the best choice



Figure 3. Markov chain visualizations of guitar solos with a 3D state space of (beat, string, fret).

for this classification problem.

4. DISCUSSION

4.1 Interpreting Results

In this study we have proposed a novel classification
problem and used simple yet intuitive Markov models to
achieve automatic classification of guitarists. Motivated
by claims in the literature about (1) guitarists’ “fretboard
choreographies” [22], and (2) fretboard information lead-
ing to stronger models than ones built on pitch-based rep-
resentations alone [18, 19], we considered two different
state spaces—a 2D state space comprising beat and trans-
posed MIDI note, and a 3D state space comprising beat,
string, and transposed fret information. Pitch class and du-
ration histograms reveal basic stylistic differences between
artists. Classification was significantly above chance for
all models, with performance strongest for the first-order
Markov model built on beat and fretboard information,
substantiating the claims about the efficacy of tablature
space. Results also highlight some useful inferences about
the playing styles of the guitarists.

We observe from the classifier output that Clapton always
has the lowest number on the diagonal of the confusion
matrices, which means he is particularly hard to classify
correctly. This may be because each of his solos is dis-
tinctly different from the others, and it is hard to detect pre-
viously seen states in them. Although his transition matrix
is not the sparsest, his transition probabilities themselves
are rather small.

The models that include MNN as a state space are able to
classify Gilmour more accurately. In fact, the classification
for such models is biased toward Gilmour, i.e, more artists
are misclassified as Gilmour. There may exist a number
of (beat, MNN) states where Gilmour’s transition proba-
bilities dominate. If any of these states are detected in an
unseen song, the likelihood function will be heavily biased
toward Gilmour even if the true artist is different. This is
also due to the fact that we lose information by represent-
ing pitches merely as MIDI notes. For example, the note
C4 represented by MNN 48 can be represented in (string,
fret) format as (2, 1), (3, 5), (4, 10), (5, 15) or (6, 20). In a
state-space model that includes string and fret information,
these would be five unique states, but in the MNN model



(a) Zero order, (beat, MNN)
Overall accuracy–35.00%

P \ R C G H K
C 2 0 2 2
G 6 14 5 9
H 6 3 5 2
K 6 3 8 7

(b) Zero order, (beat,string,fret)
Overall accuracy–32.50%

P \ R C G H K
C 3 0 3 0
G 7 9 6 9
H 4 2 5 2
K 6 9 6 9

(c) First order, (beat, MNN)
Overall accuracy–43.75%

P \ R C G H K
C 4 0 3 0
G 4 10 1 7
H 7 4 12 4
K 5 6 4 9

(d) First order, (beat,string,fret)
Overall accuracy–50.00%

P \ R C G H K
C 6 0 4 0
G 2 8 1 4
H 6 3 12 2
K 6 9 3 14

Table 2. Confusion matrices for all classification models, where “P” stands for prediction, “R” for reference, and “C”, “G”,
“H”, and “K” our four artists Clapton, Gilmour, Hendrix, and Knopfler, respectively.

they would all denote the same state.
The confusion matrices also show notable confusion be-

tween Knopfler and Gilmour. This makes sense based
upon the artist self-similarity matrices. The two first-order
models classify Jimi Hendrix and Mark Knopfler well.
One may expect Knopfler to have a high classification ac-
curacy since he was shown to have the most repetitive pat-
tern of states. Hendrix’s high classification accuracy is
more surprising, but can be explained. Although Hendrix
has a large number of unique states in his graph, his transi-
tion probabilities between those states are relatively high.
If these states with high transition probabilities are found
in a new solo, Hendrix’s log likelihood will have a high
value for that solo.

Ultimately, we conclude that the first-order Markov
model with 3D state space performs best because it cap-
tures fretboard choreographies that are somewhat unique to
guitarists. Musically, this makes sense because guitarists
are likely to repeat certain “licks” and riffs. These licks
consist of notes dependent on each other and linked in a
sequential manner, which a first-order Markov model can
capture. It is to be noted that a model built on a 3D state
space will not necessarily outperform one built on a 2D
state space, as we can see from the overall accuracy of the
zero-order models. Higher-dimensional spaces are sparser,
and more zero probabilities can lead to inaccurate classifi-
cations. The relationship between dimensionality and spar-
sity is more complex and calls for detailed study which is
beyond the scope of this paper.

4.2 Limitations

As ever with work on symbolic music representations, the
dataset could be enlarged and could contain a greater num-
ber of lesser-known songs. Second, the tabs have been
transcribed by different people and may not be exactly ac-
curate, so there exists some noise in the data, especially
as we have chosen songs on the basis of average review
rating (e.g., not by the quantity of reviews). Moreover,
the transcribers may have included their own stylistic ges-
tures during transcription, which were unrelated to the gui-
tarist being analyzed but could have affected or even con-
founded classification performance [27]. This was one of
the reasons we chose not to incorporate techniques such
as bends, hammer-ons and pull-offs into our representa-
tions and classification systems, although in its most ac-
curate form such information could lead to superior re-
sults. While there are more than 20 songs by each artist,
we found overall that increasing the number of songs per

artist resulted in lower-rated tabs.
As note dependencies extend beyond closest neighbors, a

first-order Markov chain may be too simple to model mu-
sic [15,23]. Using musical phrases as states in an auxiliary
Markov model could yield better results, although it would
be challenging to define when two phrases should be con-
sidered “the same” for the purposes of defining states.

One might argue that we claim fretboard representations
are an important feature in distinguishing guitarists, yet we
transpose all solos to bring them to the same key. Trans-
position is justified because fretboard preferences among
guitarists are largely independent of key. Without transpo-
sition, the probability of finding similar states in different
solos is very low, yielding even sparser transition matrices,
which makes classification an even more difficult task.

4.3 Future Work

While the present findings are only an initial step for this
topic, they point to several directions for future research.
Identifying and distinguishing guitarists according to their
musical choices is useful because deeper understanding of
their style can aid in algorithmic composition and shed
light on what constitutes a stylistically successful guitar
solo. Music recommendation is another area where the
present research could have applications—for example,
someone who likes Eric Clapton may also enjoy B.B. King,
since both guitarists often exhibit slow, melodic playing
styles; but is not as likely to enjoy Eddie Van Halen, who
is known mostly for being a shredder.

In the future, we would like to extend the current ap-
proach to more data, and more complex and hybrid ma-
chine learning methods. Finally, the present analyses con-
sidered only symbolic features. As remarked above, it is
likely that acoustic features also contribute to the success-
ful human classification of guitar solos. It will therefore be
interesting to compare the present results to performance
of a classification system based on acoustic features, or
combined acoustic and symbolic features. Assessing hu-
man identification of guitar solos based on symbolic fea-
tures alone (e.g., using MIDI performances of the solos)
could further help to disentangle the contributions of com-
positional and acoustical cues.

5. REFERENCES

[1] H. Eghbal-Zadeh, M. Schedl, and G. Widmer, “Tim-
bral modeling for music artist recognition using
i-vectors,” in Signal Processing Conference (EU-



SIPCO), 2015 23rd European. IEEE, 2015, pp. 1286–
1290.

[2] B. Whitman, G. Flake, and S. Lawrence, “Artist de-
tection in music with Minnowmatch,” in Neural Net-
works for Signal Processing XI, 2001. Proceedings of
the 2001 IEEE Signal Processing Society Workshop.
IEEE, 2001, pp. 559–568.

[3] M. I. Mandel and D. P. W. Ellis, “Song-level features
and support vector machines for music classification,”
in ISMIR, vol. 2005, 2005, pp. 594–599.

[4] W. H. Tsai and H. M. Wang, “Automatic singer recog-
nition of popular music recordings via estimation and
modeling of solo vocal signals,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14,
no. 1, pp. 330–341, 2006.

[5] A. Mesaros, T. Virtanen, and A. Klapuri, “Singer iden-
tification in polyphonic music using vocal separation
and pattern recognition methods,” in ISMIR, 2007, pp.
375–378.

[6] T. Hedges, P. Roy, and F. Pachet, “Predicting the com-
poser and style of jazz chord progressions,” Journal
of New Music Research, vol. 43, no. 3, pp. 276–290,
2014.

[7] R. Hillewaere, B. Manderick, and D. Conklin, “String
quartet classification with monophonic models,” in IS-
MIR, 2010, pp. 537–542.

[8] M. A. Kaliakatsos-Papakostas, M. G. Epitropakis, and
M. N. Vrahatis, “Weighted Markov chain model for
musical composer identification,” in European Confer-
ence on the Applications of Evolutionary Computation.
Springer, 2011, pp. 334–343.

[9] Y. W. Liu and E. Selfridge-Field, Modeling music as
Markov chains: Composer identification. Citeseer.

[10] D. Meredith, “Using point-set compression to classify
folk songs,” in Fourth International Workshop on Folk
Music Analysis, 2014, p. 7 pages.

[11] D. Conklin, “Multiple viewpoint systems for mu-
sic classification,” Journal of New Music Research,
vol. 42, no. 1, pp. 19–26, 2013.

[12] M. A. Kaliakatsos-Papakostas, M. G. Epitropakis,
and M. N. Vrahatis, “Musical composer identifica-
tion through probabilistic and feedforward neural net-
works,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2010, pp. 411–
420.
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