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Introduction

This file contains a summary of the 2019 International Society for Music Information Retrieval

(ISMIR) Conference review form, two submissions to the 2013 ISMIR Conference, one review

for each submission, and the published version of each paper.! The review for Paper A

is too short, the review for Paper B is useful but on the long side. Reviewers are

encouraged to adhere to the Goldilocks principle and produce something in between!
A few questions and factors to consider when reviewing:

1.
2.

Does the abstract set out one or more clearly defined objectives?
Do you find the objective(s) interesting?

Does the paper achieve its stated objective(s)? In particular, please be wary of papers that
state X as their objective, evaluate X using methodology Y, but Y doesn’t constitute an
appropriate evaluation of X.

. If the paper uses technique Z to address problem W, does it reference existing work

that addresses W via techniques other than Z7 Strong papers will contain a compara-
tive evaluation—or at least discussion—of multiple different techniques for addressing the
problem. Weak papers often assume that only Z has ever been or could ever be used.

Please be courteous in your review, even if you find the paper unclear or unpalatable. For
some submitting to ISMIR, it will be their first experience of the peer-review process, so
there is no harm in following up criticisms with suggested amendments or improvements.
If you find the research interesting but it’s lacking requisite maturity, then it’s fine to say
something like “This project has potential, but to include the submission in the ISMIR
proceedings in its current state would do more harm than good”.

Consider whether the paper makes good use of the supplementary materials option, and/or
(anonymised) links to demos or other sources of information. The blind review process is
not an excuse for a paper to base significant claims on inaccessible, external sources.

It is not standard policy to sign reviews (it’s a blind review process, after all). If you've
spent a lot of time reading and reviewing a paper, however, and you want to add your
name at the bottom of a review, I'm not going to remove it. I think it encourages a
higher standard of reviewing. Beware that there is a negative side to signing reviews: if,
ultimately, the paper is rejected, the authors may fairly or unfairly associate your name
with this outcome.

Thank you for your time, and happy reviewing!

IThank you to the authors of these papers for agreeing to include their submitted versions in this document.



The Review Form

The review form for the 2019 ISMIR conference contains the following statements/questions:

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

I am an expert in the topic of the paper.
The title and abstract reflect the content of the paper.

The paper discusses, cites and compares with all relevant related work.

. The writing and language are clear and structured in a logical manner.

The references are well formatted.

The topic of the paper is relevant to the ISMIR community.

The content is scientifically correct.

The paper provides novel methods, findings or results.

The paper will have a large influence/impact on the future of the ISMIR community.

The paper provides all the necessary details or material to reproduce the results described
in the paper.

The paper provides reusable insights (i.e. the capacity to gain an accurate and deep un-
derstanding). Such insights may go beyond the scope of the paper, domain or application,
in order to build up consistent knowledge across the MIR community.

Please explain your assessment of reusable insights in the paper.

Write ONE line with the main take-home message from the paper (hidden from authors).
This paper is of award-winning quality (hidden from authors).

If yes, please explain why it should be awarded (hidden from authors).

Overall evaluation

Main review and comments for the authors

Confidential comments for the program committee (hidden from authors)



I tend to write detailed comments offline (Q17, maybe Q18), and then go to complete the
online form. These two questions plus Q12 are important for substantiating the ratings that
you give for the statements in Q1-11: if your detailed review contains no mention of novelty
(Q8), for instance, then the Program Committee may not pay much attention to your rating
for the novelty statement. Q1-11 have answer options “Strongly disagree”, “Disagree”, “Agree”,
and “Strongly agree”. Q16 has the option “Strong reject”, “Weak reject”, ““Weak accept”, and
“Strong accept”.

In case it is not clear, Q18 is resevrved for writing confidential comments to the Program
Committee (the authors will not see these comments). This is where you can vent about a very
badly written paper, or alternatively use Q14 and 15 to praise a very well written paper. Re-
member, your detailed comments to the authors should always remain courteous and measured.
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SIARCT-CFP: IMPROVING PRECISION AND THE DISCOVERY OF
INEXACT MUSICAL PATTERNS IN POINT-SET REPRESENTATIONS

First author
Affiliation]
authorl@ismir.edu

ABSTRACT

The geometric approach to intra-opus pattern discovery (in
which notes are represented as points in pitch-time space
in order to discover repeated patterns within a piece of mu-
sic) shows promise particularly for polyphonic music, but
has attracted some criticism because: (1) the approach ex-
tends to a limited number of inexact repetition types only;
(2) typically geometric pattern discovery algorithms have
poor precision, returning many false-positives. This pa-
per describes and evaluates a solution to the inexactness
problem where algorithms for pattern discovery and inex-
act pattern matching are integrated for the first time. Two
complementary solutions are proposed and assessed for the
precision problem, one involving categorisation (hence re-
duction) of output patterns, and the second involving a new
algorithm that calculates the difference between consecu-
tive point pairs only, rather than all point pairs.

1. INTRODUCTION

The discovery of repeated patterns within a piece of music
is an activity that manifests itself in a range of disciplines.
In music psychology, for example, listeners’ emotional re-
sponses to a piece exhibit distinctive behaviour at the be-
ginning of repeated sections [11]. In music analysis, an
awareness of the locations of motifs, themes, and sections,
and their relation to one another, is a prerequisite for writ-
ing about the construction of a piece [3]. Last but not least,
in music computing, algorithmic pattern discovery can be
used to define compressed representations [13] (e.g., the
numeric pitch sequence 67, 68, 67, 69, 69, 66, 67, 66, 68,
68 can be encoded as 67, 68, 67, 69, 69, and a translation
operation “-17) and can act as a guide for the algorithmic
generation of new music [9]. In the interests of supporting
these multiple manifestations, it is important that the field
of music information retrieval continues to develop and re-
fine algorithms for the discovery of repeated patterns, and
continues to evaluate these against each other and human-
annotated ground truths.

There are two main representations in use for discov-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2013 International Society for Music Information Retrieval.
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ering repeated patterns within a piece of music (hereafter
intra-opus discovery [8]): (1) viewpoints [9] involve en-
coding multiple aspects of the music as strings of symbols
(such as the numeric pitches mentioned above, or dura-
tions, intervals between notes, etc.). This approach has
been applied mainly to monophonic music; (2) the geomet-
ric approach [14] involves converting each note to a point
in pitch-time space (see the pitch-time pairs in Figures 1A
and B). Higher-dimensional spaces are also possible (e.g.,
including dimensions for duration or staff number). The
geometric approach is well-suited to handling polyphonic
music, where few attempts have been made to apply view-
points. This paper focuses on the geometric approach;
specifically, ontime and morphetic pitch number [14] (C4
= Cf4 = 60, Db4 = D4 = D4 = 61, Eb4 = E4 = 62, etc.).
Before getting into more details of related work, it is
helpful to distinguish the terms pattern matching and pat-
tern discovery. Typically in pattern matching, there is a
short musical query and a longer piece (or pieces) of music,
and the aim is to match the query to more or less exact in-
stances in the piece(s) [2, 16]. In intra-opus pattern discov-
ery there is no query, just a single piece of music, and the
requirement to discover motifs, themes, and sections that
are repeated within the piece [8, 14]. (One could say that
the purpose of a pattern discovery algorithm is to create
analytically interesting but hitherto unknown queries.) Pat-
tern discovery and pattern matching have been discussed
in the same papers [13], but nobody to our knowledge has
integrated discovery and inexact matching components in
one algorithm before. This full integration is one of the
contributions of the current work, and the other consists of
two complementary methods for improving the precision
of pattern discovery algorithms. The paper is organised
around describing and evaluating components of a new al-
gorithm called STARCT-CFP, beginning at the end of the
acronym with “FP” for fingerprinting, then “C” for cate-
gorisation, and finally STARCT, which stands for Structure
Induction Algorithm for r superdiagonals and Compact-
ness Trawler, which has been defined before [5] and for
which a Matlab implementation has been released. !

2. THE INEXACTNESS PROBLEM

In reviewing the Structure Induction Algorithm (SIA) and
other geometric pattern discovery algorithms (see [14] or
[7] for details), Lartillot and Toiviainen noted that “this

' A URL for the code will go here after review.
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Figure 1. (A) Bars 1-4 of the Theme from the first movement of the Piano Sonata in A major K.331 by Wolfgang Amadeus
Mozart (1756-1791). Labels give the ontime and morphetic pitch of the indicated note, and the box contains the top-rated
pattern output by SIARCT; (B) Bars 1-8 of Variation II from the same movement; (C) Symbolic musical similarity of the
pattern in (A) to the passage in (B), for two algorithms applied separately to the full texture and top staff only.

geometrical strategy did not apply to melodic repetitions
that presented rhythmic variations” [10, pp. 290-291]. If
the passage in Figure 1B were appended to the passage
in Figure 1A for instance and SIA applied to the single
resulting point set, there would be little in the output to
suggest that the first two bars of Figure 1B contain a vari-
ation of the bounded pattern P in Figure 1A. The points
{(0,67),(3,69), (6,66), (9,68), (12,65)} would appear in
the same output maximal translatable pattern (MTP, [14]),
as they are translated by the same amount in Figure 1B, but
intervening points in the bounded pattern are not.

The pattern matching algorithm P2 [16] struggles with
rhythmic variation also: for a given pattern P and a larger
point set D, it returns all vector-frequency pairs (w,m)
such that m > 1 points of P occur translated by w in
D. We implemented P2 and used it to match P (from
Figure 1A) to partial occurrences in D (Figure 1B). A sum-
mary of the output is plotted in Figure 1C, for both full-
texture versions of P and D and a restriction to the right
hand only (dashed and solid lines respectively). The maxi-
mal frequency M for pairs (w1, m1);eq1,2,...,s} correspond
ing to each quaver-note ontime in D is plotted, normalised
by the number of points in P, to give a measure of the sym-
bolic musical similarity of P to D over time. While there
are local maxima in the grey lines at bars 1, 5, and 6 (in the
latter case because P2 is transposition-invariant and there is
a transposed pattern within P), in general they have a rel-
atively small range, reflecting P2’s struggle to distinguish
genuine rhythmic variation from less related material.

Subsequent work on geometric pattern matching im-
proves upon P2 in terms of capturing rhythmic variation,

by representing durations as line segments [12, 16], by us-
ing the Hausdorff metric [15], or by converting to a tonal
space representation [1]. A recent fingerprinting (FP) ap-
proach [2] has the advantage of not relying on durational
information, and has options for transposition, time-shift,
and scale-factor invariance, as well as tolerance for the
percentage by which the inter-onset interval of a pair of
notes is permitted to differ, compared to a corresponding
note pair in the original. The output of FP is a time se-
ries S = S; : t € T, where the set T of successive time
points may or may not be uniformly spaced. The magni-
tude of Sy, called the matching score, indicates the extent
to which an occurrence of the query begins at time ¢. In the
transposition-invariant version, calculation of the matching
score time series begins by creating fingerprint tokens

lyj — yi, ©j — xi], t, (D

for locally constrained combinations of successive ontime-
pitch pairs (z;,y;), (z;,;), in both a query pattern P and
the larger point set D. The pair in brackets in (1) is the
hash key, and t = z; is a time stamp. A scatter plot of
the time stamps of matching hash keys for P and D can be
used to identify regions of high similarity, which appear as
approximately diagonal lines. The matching score is cal-
culated by applying an affine transformation to the scatter
plot and binning (for details, see [2, 17]).

An implementation of the FP algorithm was used to
match exact/inexact occurrences of P from Figure 1A to
D in Figure 1B, and the results are plotted in Figure 1C as
black lines. It can be seen that FP outperforms P2 at distin-
guishing the rhythmic variation in bars 1-2 of Figure 1B.



The use of locally constrained combinations of ontime-
pitch pairs, rather than one candidate translation vector ap-
plied to all points in P, is what enables the FP algorithm to
find a stronger match than P2.

Progress has been made in geometric pattern match-
ing techniques, but Lartillot and Toiviainen’s [10] criticism
of the discovery approach still stands, as nobody to our
knowledge has integrated an inexact matching technique
within a pattern discovery approach. We do so now, ac-
cording to the following steps:

1. Run SIARCT [5] on a given point set D, returning
patterns Py, Ps, ..., Py, each of which has at least
one translationally exact repetition (i.e., two occur-
rences) in D,

2. For ¢ = 1,2,..., M, run the FP algorithm [2] on

P; and D, returning time points tf"',tfi, oo thiat
which there may be further exact/inexact occurrences
of P;, according to whether the value at tf ’ is greater

than some similarity threshold c € [0, 1).

Underlying this integration of pattern discovery and pat-
tern matching is the following assumption, which we call
the translationally exact once (TEO) hypothesis:

If a piece of music contains multiple inexact
occurrences of a perceptually salient or ana-
lytically interesting pattern, then for some ma-
jority subset of the pattern (i.e., a subset con-
taining at least half of the points), there ex-
ists at least one translationally exact repetition
(i.e., at least two occurrences).

If the discovery algorithm outputs a majority subset, then
the matching algorithm may be relied upon to output fur-
ther exact/inexact occurrences.

As a case study, the new algorithm defined above (called
SIARCT-CFP) was run on the Nocturne in E major op.62
no.2 by Frédéric Chopin (1810-1849).% This is a sensi-
ble choice of piece, as there are multiple varied repetitions
of the opening four-bar theme (c.f. Figures 2B and C for
instance). Fourteen patterns were output in total, one of
which @ is bounded in Figure 2A, and occurs translated
exactly twice (Figure 2D, bar 27, and Figure 2E, bar 58).
It can be seen that these occurrences are rated as identical
or very similar to (), with normalised matching scores of
1 and .963 respectively. The time series output by the FP
has mean .267 and standard deviation .160, suggesting that
the occurrence in Figure 2C is barely distinguishable from
other unrelated material. This makes sense, as although
the contour and durations of the melody are the same as
in @, the pitch intervals are different (see arrows) and so
is the accompaniment. We note, however, that the FP al-
gorithm could be extended further to incorporate contour
(up, down, same), as well as other viewpoints [9], because
of its use of locally constrained comparisons.

2 The first part of the algorithm, SIAR, ran with parameter r = 1.
Second, the compactness trawler (CT) ran with compactness thresh-
old a = 4/5, cardinality threshold 10, and lexicographic region type
[7]. Third, the categorising and fingerprinting (CFP) ran with similarity
threshold ¢ = 1/2.
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Figure 2. Excerpts from the Nocturne in E major op.62
no.2 by Chopin. Dashed lines in (A) bound a pattern @
discovered by STARCT, which is used to match other inex-
act occurrences, with degree of exactness indicated in the
figure by numbers in [0, 1]. Pedalling omitted for clarity.

3. THE PRECISION PROBLEM
3.1 Categorisation by Pattern Matching

Now that we have integrated some inexact pattern match-
ing techniques into our pattern discovery approach, it is
possible to employ them for the purposes of categorisa-
tion, based on the idea that P2 [16] or FP [2] can be used
to compare two discovered patterns P; and P; in exactly
the same way as if P; = P was aquery and P; = D was a
point set (or vice versa, as the measures are symmetric).
The second “C” in SIARCT-CFP stands for a categoris-
ation process, which will be described now. The purpose
of categorisation is to reduce an overwhelming amount of
information (e.g., output patterns) to a more manageable
number of exemplars. Here categorisation does not mean
classifying patterns into an accepted/interesting category
versus a rejected/uninteresting category; rather it means
grouping similar patterns and representing each group with
one exemplar pattern. Our motivation for categorising the



output of STARCT is to improve its precision: while the
precision and recall of pattern discovery algorithms has
been shown to benefit from compactness trawling, the pre-
cision is still quite poor [7]. For example, SIARCT out-
puts 76 patterns when run on Chopin’s op.62 no.2, which
can be reduced to fourteen patterns by using the following
categorisation process:

1. Let P = {P1, Ps,..., Py} be the patterns output
by STARCT or some other algorithm, sorted descend-
ing by a rating of perceived pattern importance [5]
(or some other ordering). Let J = {1,2,..., M}
index the patterns that are uncategorised currently;

2. Let ¢ = min(J) and calculate the maximum nor-
malised matching scores s(P;, P;) for each j € J
such that 5 > ;

3. For each similarity score s(P;, P;) that is greater
than some specifiable similarity threshold ¢ € [0, 1),
place pattern P; in the category for which P; is the
exemplar, and remove j from .J;

4. Repeat steps 2 and 3 until either J has one element
k, in which case define Pj to be an exemplar with
category membership Py, or otherwise J is empty;

5. For the purposes of algorithm evaluation, return only
the exemplars Pi(l)a ]Di(g), e, R(m)

Depending on the choice of ¢, m < M. The categorisa-
tion process can be visualised with two similarity matrices
(Figure 3). The matrix in Figure 3A contains the maxi-
mum normalised matching scores for each pair of 76 out-
put patterns for Chopin’s op.62 no.2, ordered as in step 1

above. The matrix in Figure 3B is a permutation of Figure 3A,

showing the categorised patterns (c = .5) in their fourteen
categories, bounded by white squares. The third square
from top-left in Figure 3B represents the category for which
@ in Figure 2A is the exemplar. The more than fivefold
(5.43 ~ 76/14) reduction in output achieved by pattern-
matching categorisation may well improve precision: as
discussed, the theme annotated in Figure 2A survives the
categorisation process, and so do all of the repetitions in
this piece lasting four or more bars (results not shown).
Pattern-matching categorisation also constitutes a novel and
interesting use of the FP algorithm [2]. It should be noted
that choosing too high a value of ¢ could lead to over-
reduction and filtering out of analytically interesting pat-
terns. For instance, the first three squares in Figure 3B
show considerable variegation, suggesting that some inter-
esting subcategories may be overlooked.

3.2 Consecutive Points and Conjugate Patterns

The final novel contribution of this paper is to evaluate the
SIARCT pattern discovery algorithm [5] against a collec-
tion of music containing repeated sections, and to com-
pare its performance (especially precision) to SIA [14] and
SIAR [5]. SIA outputs thousands of patterns for Chopin’s
op.62 no.2 (and other pieces of music [7]), so it is nec-
essary to develop a more parsimonious pattern discovery

Discovered Pattern Index

10 20 30 40 50 60 70

(vy)

Permuted Discovered Pattern Index

10 20 30 40 50 60 70
Permuted Discovered Pattern Index

Figure 3. (A) Pairwise symbolic musical similarities
(ranging from white for dissimilar to black for identical)
for 76 patterns discovered by SIARCT in Chopin’s op.62
no.2, ordered by a rating formula for perceived salience;
(B) Permutation of the above matrix, with white lines indi-
cating the results of categorising into fourteen groups.

algorithm for use as input to the categorisation and finger-
printing components described above (e.g., STARCT out-
puts only 76 patterns for Chopin’s 0op.62 no.2).

It has long been thought that in order to discover re-
peated patterns within a geometric representation D of a
piece, it is necessary to calculate the difference between
each pair of n points (giving n[n — 1]/2 calculations in to-
tal), as in SIA [14]. Unlike SIA, the first step of SIARCT
is to calculate the difference between consecutive pairs of
points only (n — 1 calculations). Some exhaustive pair-
wise comparisons are still made in the second step, but for
non-overlapping and typically small subsets of D, meaning
that the total number of difference calculations performed
by STARCT is far less than n[n — 1]/2, in all but one de-
generate case.> The third step of SIARCT makes use of a
concept known as conjugate patterns [5]: if a pattern con-
taining [ points occurs m times in a point set, then there ex-
ists in the same point set a pattern consisting of m points
that occurs [ times. The fourth step calculates MTPs for
each vector in a list L. As a consequence of manipulating
conjugate patterns, the vectors corresponding to repeated
sections should be at or near the top of L. So for this step

3 Please see [5] for the algorithmic details.



we could: (1) distribute each MTP calculation to parallel
processors, and/or; (2) output MTPs dynamically for the
user to browse, whilst calculation of the remaining MTPs
continues. The main claim is that SIARCT will have much
smaller output than STA, with minimal or no negative im-
pact on its performance as measured by precision, recall,
and robust versions of these metrics [4]. The compactness
trawler (CT) part of STARCT is exactly as in [7], so is not
addressed again here.

SIA, SIAR, and SIARCT were run on point-set repre-
sentations of movements by Ludwig van Beethoven (1770-
1827) and Chopin listed in Figure 4A. SIARCT ran with
compactness threshold a = 1, and points threshold b = 50.
This means that only patterns containing 50 points or more
were returned, and they had to have maximal compactness
of 1. The parameter values make sense in terms of try-
ing to discover repeated sections. To make the evaluation
fair, we also filtered the results of SIA and SIAR, returning
only those patterns that contained 50 points or more. In the
results, these versions of SIA and SIAR are referred to as
SIA (50+) and SIAR (50+).

3.3 Evaluation Results

Figure 4B shows the log of the total number of patterns
output by each algorithm for each movement/piece. It sup-
ports the claim that SIAR has a much smaller output than
SIA. Tt is difficult to see from Figure 4B, but the same ob-
servation applies to the filtered versions of each algorithm,
SIAR (50+) and SIA (50+). The number of patterns output
by SIARCT is several orders of magnitude less than that
of any other algorithm. Figure 4C and Figure 4E show that
compared with SIA’s performance, SIAR is not negatively
impacted by restricting calculations to consecutive pairs of
points. The establishment precision and establishment re-
call are higher for SIAR than for SIA across all pieces.
Overall, the most effective algorithm is SIARCT (see
Figure 4C and Figure 4E). For half of the pieces, it dis-
covers all ground truth patterns exactly (Figure 4F). When
SIARCT fails to discover a ground truth pattern exactly, of-
ten this is due to a difference between the repeated section
as written in the score, and the repeated pattern as heard
in a performance. For instance, in the fourth movement
of Beethoven’s op.7, bars 65-70 are marked as a repeated
section, and this is included in the ground truth. The re-
peated notes extend beyond these bars in both directions,
however, creating a longer repeated pattern in a perfor-
mance. SIARCT discovers the latter, ‘performed’ pattern,
which reduces exact precision and recall. The more ro-
bust establishment metrics are not much reduced (e.g., see
Figure 4E), and arguably discovering the performed pat-
tern is preferable from a music-perceptual point of view.

4. DISCUSSION AND FUTURE WORK

This paper identifies two valid reasons why the geomet-
ric approach to intra-opus pattern discovery has attracted
some criticism—namely (1) the approach extends to a lim-
ited number of inexact repetition types only, and (2) typ-

ically geometric pattern discovery algorithms are impre-
cise, returning many false-positives results. A new algo-
rithm called STARCT-CFP was then described and evalu-
ated component by component, in an attempt to address
these criticisms. It is the first geometric pattern discov-
ery algorithm to fully integrate an inexact pattern match-
ing component (the fingerprinting algorithm of [2]), and
this matching component was shown to be effective for re-
trieving more or less exact occurrences of themes in pieces
by Mozart and Chopin. The comparison of the FP algo-
rithm [2] to a baseline pattern matching algorithm P2 [16]
demonstrated that the former was superior for a particular
example. In general it may be preferable to have two or
more pattern-matching algorithms at one’s disposal, how-
ever, as the number of variation techniques is large, and
trying to account for them all with one algorithm will likely
produce false-positive matches.

The precision metrics were of particular interest to us
in the comparative evaluation of SIARCT [5], SIAR [5],
and SIA [14], as it had been claimed that SIARCT could
achieve superior levels of precision compared to SIA and
SIAR, without harming recall. This claim was supported
by the evaluation results, although in future work it will be
necessary to see if similar results are achieved for ground
truths containing shorter patterns than repeated sections.

Our translationally exact once (TEO) hypothesis (see
Section 2) was borne out in the case study of Chopin’s
0p.62 no.2, where @@ (Figure 2A) occurred translated ex-
actly twice, at bars 27 (Figure 2D) and 58 (Figure 2E). The
contents of ) were sufficient for use as a query to retrieve
less exact versions such as in bars 9 (Figure 2B) and 25
(Figure 2D). For the case study of the Theme section and
Variation II from Mozart’s K331, SIARCT was able to dis-
cover perceptually salient patterns such as P in Figure 1A,
which recurs in bars 5-7 of the Theme section (not shown).
As the TEO hypothesis holds in both cases, it would be
worthwhile in future work to try to find counterexample
pieces, as this will help to refine and improve our under-
lying assumptions and ensuing algorithms. Future work
will also attempt to show users/developers the differences
between themes and partial matches, and to identify varia-
tion techniques (triplets, minore, etc.) automatically.
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Paper A: Review

This paper presents some extensions to methods for pattern discovery within musical works. It is
well written and accessible to the novice (me). I really have very little criticism, the algorithmic
steps are well laid out, and the prose quite clear. As far as interest, this is fairly far from my
area, but the examples were compelling, and I found the paper interesting overall. Methodologies
appear sound, aspects of the algorithm are explored and evaluated separately. It should provide
interest to those working in this area.



Paper A: Published Version. ..



14th International Society for Music Information Retrieval Conference (ISMIR 2013)

SIARCT-CFP: IMPROVING PRECISION AND THE DISCOVERY OF
INEXACT MUSICAL PATTERNS IN POINT-SET REPRESENTATIONS
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{ tom.collins, andreas.arzt, sebastian.flossmann, gerhard. widmer} @jku.at

ABSTRACT

The geometric approach to intra-opus pattern discovery (in
which notes are represented as points in pitch-time space
in order to discover repeated patterns within a piece of mu-
sic) shows promise particularly for polyphonic music, but
has attracted some criticism because: (1) the approach ex-
tends to a limited number of inexact repetition types only;
(2) typically geometric pattern discovery algorithms have
poor precision, returning many false positives. This pa-
per describes and evaluates a solution to the inexactness
problem where algorithms for pattern discovery and inex-
act pattern matching are integrated for the first time. Two
complementary solutions are proposed and assessed for the
precision problem, one involving categorisation (hence re-
duction) of output patterns, and the second involving a new
algorithm that calculates the difference between consecu-
tive point pairs, rather than all point pairs.

1. INTRODUCTION

The discovery of repeated patterns within a piece of music
is an activity that manifests itself in a range of disciplines.
In music psychology, for example, listeners’ emotional re-
sponses to a piece exhibit distinctive behaviour at the be-
ginning of repeated sections [11]. In music analysis, an
awareness of the locations of motifs, themes, and sections,
and their relation to one another, is a prerequisite for writ-
ing about the construction of a piece [3]. Last but not least,
in music computing, algorithmic pattern discovery can be
used to define compressed representations [13] (e.g., the
numeric pitch sequence 67, 68, 67, 69, 69, 66, 67, 66, 68,
68 can be encoded as 67, 68, 67, 69, 69, and a translation
operation “-1”) and can act as a guide for the algorithmic
generation of new music [9]. In the interests of supporting
these multiple manifestations, it is important that the field
of music information retrieval continues to develop and re-
fine algorithms for the discovery of repeated patterns, and
continues to evaluate these against each other and human-
annotated ground truths.

There are two main representations in use for discov-
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
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ering repeated patterns within a piece of music (hereafter
intra-opus discovery [8]): (1) viewpoints [9] involve en-
coding multiple aspects of the music as strings of symbols
(such as the numeric pitches mentioned above, or dura-
tions, intervals between notes, etc.). This approach has
been applied mainly to monophonic music; (2) the geomet-
ric approach [14] involves converting each note to a point
in pitch-time space (see the pitch-time pairs in Figures 1A
and B). Higher-dimensional spaces are also possible (e.g.,
including dimensions for duration or staff number). The
geometric approach is well-suited to handling polyphonic
music, where few attempts have been made to apply view-
points. This paper focuses on the geometric approach;
specifically, ontime and morphetic pitch number [14] (C4
= Cf4 = 60, Db4 = D4 = D4 = 61, Eb4 = E4 = 62, etc.).
Before getting into more details of related work, it is
helpful to distinguish the terms pattern matching and pat-
tern discovery. Typically in pattern matching, there is a
short musical query and a longer piece (or pieces) of music,
and the aim is to match the query to more or less exact in-
stances in the piece(s) [2,17]. In intra-opus pattern discov-
ery there is no query, just a single piece of music, and the
requirement to discover motifs, themes, and sections that
are repeated within the piece [8, 14]. (One could say that
the purpose of a pattern discovery algorithm is to create
analytically interesting but hitherto unknown queries.) Pat-
tern discovery and pattern matching have been discussed
in the same papers [13], but nobody to our knowledge has
integrated discovery and inexact matching components in
one algorithm before. This full integration is one of the
contributions of the current work, and the other consists of
two complementary methods for improving the precision
of pattern discovery algorithms. The paper is organised
around describing and evaluating components of a new al-
gorithm called SIARCT-CFP, beginning at the end of the
acronym with “FP” for fingerprinting, then “C” for cate-
gorisation, and finally STARCT, which stands for Structure
Induction Algorithm for r superdiagonals and Compact-
ness Trawler, which has been defined before [5] and for
which a Matlab implementation has been released. !

2. THE INEXACTNESS PROBLEM

In reviewing the Structure Induction Algorithm (SIA) and
other geometric pattern discovery algorithms (see [14] or
[7] for details), Lartillot and Toiviainen noted that “this ge-

Uhttp://www.tomcollinsresearch.net
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Figure 1. (A) Bars 1-4 of the Theme from the first movement of Piano Sonata no.11 in A major K331 by Wolfgang
Amadeus Mozart (1756-1791). Labels give the ontime and morphetic pitch of the indicated note, and the box contains the
top-rated pattern output by SIARCT; (B) Bars 1-8 of Variation II from the same movement; (C) Symbolic musical similarity
of the pattern in (A) to the passage in (B), for two algorithms applied separately to the full texture and top staff only.

ometrical strategy did not apply to melodic repetitions that
presented rhythmic variations” [10, pp. 290-291]. To illus-
trate this problem we use a theme by Mozart, from “one
of the most overanalyzed pieces in the history of music
theory” [15, p. 160]. We are not particularly interested in
adding to discussions of the structure of the theme itself,
rather in the relation of the theme to a subsequent vari-
ation. If the passage in Figure 1B were appended to the
passage in Figure 1A and SIA applied to the single result-
ing point set, there would be little in the output to sug-
gest that the first two bars of Figure 1B contain a varia-
tion on the bounded pattern P in Figure 1A. The points
{(0,67),(3,69), (6,66), (9,68), (12,65)} would appear in
the same output maximal translatable pattern (MTP, [14]),
as they occur under the same translation in Figure 1B, but
intervening points in the bounded pattern do not.

The pattern matching algorithm P2 [17] struggles with
rhythmic variation also: for a given pattern P and a larger
point set D, it returns all vector-frequency pairs (w,m)
such that m > 1 points of P occur translated by w in
D. We implemented P2 and used it to match P (from
Figure 1A) to partial occurrences in D (Figure 1B). A sum-
mary of the output is plotted in Figure 1C, for both full-
texture versions of P and D and a restriction to the right
hand only (dashed and solid lines respectively). The maxi-
mal frequency M for pairs (W1, m1);c1,2,...,s} correspond-
ing to each crotchet-note ontime in D is plotted, normalised
by the number of points in P, to give a measure of the sym-
bolic musical similarity of P to D over time. While there
are local maxima in the grey lines at bars 1, 2, and 5 (in the
second case because P2 is transposition-invariant and there
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is a transposed pattern within P), in general they have a rel-
atively small range, reflecting P2’s struggle to distinguish
genuine rhythmic variation from less related material.

Subsequent work on geometric pattern matching im-
proves upon P2 in terms of capturing rhythmic variation,
by representing durations as line segments [12, 17], by us-
ing the Hausdorff metric [16], or by converting to a tonal
space representation [1]. A recent fingerprinting (FP) ap-
proach [2] has the advantage of not relying on durational
information, and has options for transposition, time-shift,
and scale-factor invariance, as well as tolerance for the
amount by which the inter-onset interval of a pair of notes
is permitted to differ, compared to a corresponding note
pair in the original. The output of FP is a time series
S =5, : t € T, where the set T' of successive time points
may or may not be uniformly spaced. The magnitude of
St, called the matching score, indicates the extent to which
an occurrence of the query begins at time ¢. In the trans-
position-invariant version, calculation of the matching score
time series begins by creating fingerprint tokens

ey

i — vi» xj —mi], L,
for locally constrained combinations of successive ontime-
pitch pairs (z;,y;), (;,y;), in both a query pattern P and
the larger point set D. The pair in brackets in (1) is the
hash key, and t = z; is a time stamp. A scatter plot of
the time stamps of matching hash keys for P and D can be
used to identify regions of high similarity, which appear as
approximately diagonal lines. The matching score is cal-
culated by applying an affine transformation to the scatter
plot and binning (for details, see [2, 18]).
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An implementation of the FP algorithm was used to
match exact/inexact occurrences of P from Figure 1A to
D in Figure 1B, and the results are plotted in Figure 1C as
black lines. It can be seen that FP outperforms P2 at distin-
guishing the rhythmic variation in bars 1-2 of Figure 1B.
The use of locally constrained combinations of ontime-
pitch pairs, rather than one candidate translation vector ap-
plied to all points in P, is what enables the FP algorithm to
find a stronger match than P2.

Progress has been made in geometric pattern match-
ing techniques, but Lartillot and Toiviainen’s [10] criticism
of the discovery approach still stands, as nobody to our
knowledge has integrated an inexact matching technique
within a pattern discovery approach. We do so now, ac-
cording to the following steps, which define the “FP” part
of SIARCT-CFP:

1. Let Py, Ps, ..., Py be the output of a pattern dis-
covery algorithm, each P; having at least one trans-
lationally exact repetition (two occurrences) in D;

. Fori = 1,2,..., M, run the FP algorithm [2] on
P; and D, returning time points ¢]°, 2" ... 2 at
which there may be further exact/inexact occurrences
of P;, according to whether the value at tf * is greater
than some similarity threshold c € [0, 1).

Underlying this integration of pattern discovery and pat-
tern matching is the following assumption, which we call
the translationally exact once (TEO) hypothesis:

If a piece of music contains multiple inexact
occurrences of a perceptually salient or ana-
lytically interesting pattern, then for some ma-
jority subset of the pattern (i.e., a subset con-
taining at least half of the points), there ex-
ists at least one translationally exact repetition
(i.e., at least two occurrences).

If the discovery algorithm outputs such a majority subset,
then the matching algorithm may be relied upon to output
further exact/inexact occurrences of the pattern.

As a case study, the new algorithm SIARCT-CFP was
run on the Nocturne in E major op.62 no.2 by Frédéric
Chopin (1810-1849).2 This is a sensible choice of piece,
as it contains multiple variations of the opening theme (c.f.
Figures 2B and D for instance). Fourteen patterns were
output in total, one of which @ is bounded in Figure 2A,
and occurs translated three times (bars 27-28, 58-59, and
60-61). These occurrences are rated as very similar to @,
with normalised matching scores close or equal to 1. The
time series output by the FP has mean .264 and standard
deviation .173, suggesting that the occurrence in Figure 2C
is not distinguishable from other unrelated material. This
makes sense, as although the contour and rhythm of the
melody are as in @, the pitch intervals are different (see ar-
rows) and so is the accompaniment. We note, however, that

2 The first part of the algorithm, SIAR, ran with parameter = 1.
Second, the compactness trawler (CT) ran with compactness thresh-
old a = 4/5, cardinality threshold 10, and lexicographic region type
[7]. Third, the categorising and fingerprinting (CFP) ran with similarity
threshold ¢ = 1/2.
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Figure 2. Excerpts from the Nocturne in E major op.62
no.2 by Chopin. Dashed lines in (A) bound a pattern @
discovered by STARCT, which is used to match other inex-
act occurrences, with degree of exactness indicated in the
figure by numbers in [0, 1]. Pedalling omitted for clarity.

the FP algorithm could be extended further to incorporate
contour (up, down, same), as well as other viewpoints [9],
because of its use of locally constrained comparisons.

3. THE PRECISION PROBLEM
3.1 Categorisation by Pattern Matching

Now that we have integrated some inexact pattern match-
ing techniques into our pattern discovery approach, it is
possible to employ them for the purposes of categorisa-
tion, based on the idea that P2 [17] or FP [2] can be used
to compare two discovered patterns P; and P; in exactly
the same way as if P, = P was aquery and P; = D was a
point set (or vice versa, as the measures are symmetric).
The second “C” in STARCT-CFP stands for a categoris-
ation process, which will be described now. The purpose
of categorisation is to reduce an overwhelming amount of
information (e.g., output patterns) to a more manageable
number of exemplars. Here categorisation does not mean
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classifying patterns into an accepted/interesting category
versus a rejected/uninteresting category; rather it means
grouping similar patterns and representing each group with
one exemplar pattern. Our motivation for categorising the
output of STARCT is to improve its precision: while the
precision and recall of pattern discovery algorithms has
been shown to benefit from compactness trawling, the pre-
cision is still quite poor [7]. For example, SIARCT out-
puts 76 patterns when run on Chopin’s op.62 no.2, which
can be reduced to fourteen patterns by using the following
categorisation process:

1. Let Py, Ps, ..., Py be the output of a pattern dis-
covery algorithm, sorted descending by a rating of
perceived pattern importance [6], or some other or-
dering. Let J = {1,2,..., M} index the patterns
that are uncategorised currently;

. For the most important uncategorised pattern, index
i = min(J), calculate the maximum normalised mat-
ching scores s(P;, P;) foreach j € J, j # i;

. For each similarity score s(FP;, P;) that is greater
than some specifiable similarity threshold ¢ € [0, 1),
place pattern P; in the category for which P; is the
exemplar, and remove j from J;

. Repeat steps 2 and 3 until either J has one element
k, in which case define Py to be an exemplar with
category membership Py, or otherwise J is empty;

. For the purposes of algorithm evaluation, return only
the exemplars P;1), Py2), - - - Pim)-

Depending on the choice of ¢, m < M. The categorisa-
tion process can be visualised with two similarity matrices
(Figure 3). The matrix in Figure 3A contains the maxi-
mum normalised matching scores for each pair of 76 out-
put patterns for Chopin’s 0p.62 no.2, ordered as in step 1
above. The matrix in Figure 3B is a permutation of 3A,
showing the categorised patterns (c .5) in their four-
teen categories, bounded by white squares. The fourth
square from top-left in Figure 3B represents the category
for which @ in Figure 2A is the exemplar. The fivefold
(5.43 =~ 76/14) reduction in output achieved by pattern-
matching categorisation may well improve precision: as
discussed, the theme annotated in Figure 2A survives the
categorisation process, and so do all of the repetitions in
this piece lasting four or more bars (results not shown).
Pattern-matching categorisation also constitutes a novel and
interesting use of the FP algorithm [2]. It should be noted
that choosing too low a value for ¢ could lead to over-
reduction and filtering out of analytically interesting pat-
terns. For instance, the first two squares in Figure 3B show
considerable variegation, suggesting that some interesting
subcategories may be overlooked.

3.2 Consecutive Points and Conjugate Patterns

The final novel contribution of this paper is to evaluate the
SIARCT pattern discovery algorithm [5] against a collec-
tion of music containing repeated sections, and to com-
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Figure 3. (A) Pairwise symbolic musical similarities
(ranging from white for dissimilar to black for identical)
for 76 patterns discovered by SIARCT in Chopin’s op.62
no.2, ordered by a rating formula for perceived salience;
(B) Permutation of the above matrix, with white lines indi-
cating the results of categorising into fourteen groups.

pare its performance (especially precision) to SIA [14] and
SIAR [5]. SIA outputs thousands of patterns for Chopin’s
op.62 no.2 (and other pieces of music [7]), so it is nec-
essary to develop a more parsimonious pattern discovery
algorithm for use as input to the categorisation and finger-
printing components described above (e.g., STARCT out-
puts only 76 patterns for Chopin’s 0p.62 no.2).

It has long been thought that in order to discover re-
peated patterns within a geometric representation D of a
piece, it is necessary to calculate the difference between
each pair of n points (n[n—1]/2 calculations in total), as in
SIA [14]. Unlike SIA, the first step of SIARCT is to calcu-
late the difference between consecutive pairs of points only
(n — 1 calculations). Some exhaustive pairwise compar-
isons are still made in the second step, but for small, non-
overlapping subsets of DD, meaning that the total number
of difference calculations performed by SIARCT is far less
than n[n — 1] /2, in all but one degenerate case.> The third
step of STARCT makes use of a concept known as conju-
gate patterns [5]: if a pattern containing [ points occurs m
times in a point set, then there exists in the same point set
a pattern consisting of m points that occurs [/ times. The
fourth step calculates MTPs for each vector in a list L. As
a consequence of manipulating conjugate patterns, the vec-
tors corresponding to repeated sections should be at or near

3 Please see [5] for the algorithmic details.
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the top of L. So for this step we could: (1) distribute each
MTP calculation to parallel processors, and/or; (2) output
MTPs dynamically for the user to browse, whilst calcula-
tion of the remaining MTPs continues. The main claim is
that STARCT will have much smaller output than SIA, with
minimal or no negative impact on its performance as mea-
sured by precision, recall, and robust versions of these met-
rics [4]. The compactness trawler (CT) part of SIARCT is
exactly as in [7], so is not addressed again here.

SIA, SIAR, and SIARCT were run on point-set repre-
sentations of movements by Ludwig van Beethoven (1770-
1827) and Chopin listed in Figure 4A. SIARCT ran with
compactness threshold a = 1, and points threshold b = 50.
This means that only patterns containing 50 points or more
were returned, and they had to have maximal compactness
of 1. The parameter values make sense in terms of try-
ing to discover repeated sections. To make the evaluation
fair, we also filtered the results of SIA and SIAR, returning
only those patterns that contained 50 points or more. In the
results, these versions of SIA and SIAR are referred to as
SIA (50+) and SIAR (50+).

3.3 Evaluation Results

Figure 4B shows the log of the total number of patterns
output by each algorithm for each movement/piece. It sup-
ports the claim that SIAR has a much smaller output than
SIA. Tt is difficult to see from Figure 4B, but the same ob-
servation applies to the filtered versions of each algorithm,
SIAR (50+) and SIA (50+). The number of patterns output
by SIARCT is several orders of magnitude less than that
of any other algorithm. Figure 4C and Figure 4E show that
compared with SIA’s performance, SIAR is not negatively
impacted by restricting calculations to consecutive pairs of
points. The establishment precision and establishment re-
call for SIAR and SIA are comparable across all pieces.
Overall, the most effective algorithm is SIARCT (see
Figure 4C and Figure 4E). For half of the pieces, it dis-
covers all ground truth patterns exactly (Figure 4F). When
SIARCT fails to discover a ground truth pattern exactly, of-
ten this is due to a difference between the repeated section
as written in the score, and the repeated pattern as heard
in a performance. For instance, in the fourth movement
of Beethoven’s op.7, bars 65-70 are marked as a repeated
section, and this is included in the ground truth. The re-
peated notes extend beyond these bars in both directions,
however, creating a longer repeated pattern in a perfor-
mance. SIARCT discovers the latter, performed pattern,
which reduces exact precision and recall. The more ro-
bust establishment metrics are not much reduced (e.g., see
Figure 4E), and arguably discovering the performed pat-
tern is preferable from a music-perceptual point of view.

4. DISCUSSION AND FUTURE WORK

This paper identifies two valid reasons why the geomet-
ric approach to intra-opus pattern discovery has attracted
some criticism—namely (1) the approach extends to a lim-
ited number of inexact repetition types only, and (2) typ-
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ically geometric pattern discovery algorithms are impre-
cise, returning many false positives results. A new algo-
rithm called STARCT-CFP has been described and evalu-
ated component-wise, in an attempt to address these crit-
icisms. It is the first geometric pattern discovery algo-
rithm to fully integrate an inexact pattern matching compo-
nent (the fingerprinting algorithm of [2]), and this match-
ing component was shown to be effective for retrieving
inexact occurrences of themes in pieces by Mozart and
Chopin. The comparison of the FP algorithm [2] to a base-
line pattern matching algorithm P2 [17] demonstrated that
the former was superior for a particular example. In gen-
eral it may be preferable to have two or more pattern match-
ers at one’s disposal, however, as the number of variation
techniques is large, and trying to account for them all with
one algorithm will likely produce false positive matches.

The precision metrics were of particular interest to us
in the comparative evaluation of SIARCT [5], SIAR [5],
and SIA [14], as we claimed that STARCT could achieve
levels of precision comparable to SIA and SIAR, without
harming recall. This claim was supported by the evaluation
results, although in future work it will be necessary to see
if similar results are achieved for ground truths containing
shorter patterns than repeated sections.

Our translationally exact once (TEO) hypothesis (see
Section 2) was borne out in the case study of Chopin’s
0p.62 no.2, where @@ (Figure 2A) occurred exactly under
translation (bars 27-28, 58-59, and 60-61), and its con-
tents were sufficient for use as a query to retrieve less exact
versions such as in bars 9 (Figure 2B) and 25 (Figure 2D).
For the case study of the Theme section and Variation II
from Mozart’s K331, SIARCT was able to discover per-
ceptually salient patterns such as P in Figure 1A, which
recurs in bars 5-7 of the Theme section (not shown). As the
TEO hypothesis holds in both cases, future work should
focus on finding counterexample pieces, as this will help
to refine and improve our underlying assumptions and en-
suing algorithms. Future work will also attempt to show
users/developers the differences between themes and par-
tial matches, and to identify variation techniques (triplets,
minore, etc.) automatically.
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ABSTRACT

The analysis of sequential patterns is important for ex-
tracting information from music owing to its fundamen-
tally temporal nature. In this paper, we present a distributed
model for music prediction based on the Restricted Boltz-
mann Machine (RBM). This model is first used for pre-
dicting the next pitch in a given pitch sequence, and then
adapted to also make use of information in sequences of
note-durations from monophonic melodies, on the same
task. In the process, we also propose an efficient way of
representing this additional information that takes advan-
tage of the RBM’s structure. Results show that this RBM-
based model performs very competitively with previously
evaluated n-gram models and also outperforms them in
certain cases. It is able to make use of information present
in longer sequences more effectively than n-gram mod-
els, while also scaling gracefully in the number of free pa-
rameters required. This makes the present approach very
promising for improved music prediction. The results ob-
tained here are also in agreement with previously demon-
strated success of distributed models for natural language.

1. INTRODUCTION

Whether or not computational models can capture elements
of style and structure in tonal music is a question that has
received much attention in computer music research. It
started with an interest in Markov models for music analy-
sis in the late 1940s and 1950s [2]. The years that followed
saw a further diversification of the models applied to style-
oriented music generation, as well as their musical appli-
cations. Some of the notable approaches that emerged are
based on rule-discovery [7], neural networks [15], genetic
algorithms [4], and context-free grammars [11].

Among the different approaches adopted for predict-
ing music, we focus here on two that have received long-
standing attention over the past 2-3 decades. The first are
Markov models, which have been applied to a number of
musical research tasks, including computer-assisted com-
position [2], chorale harmonization [1], musical style anal-
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ysis [6], and as a collaborative musical instrument [16]. On
the other hand, connectionist approaches have also proven
to be effective in music. Neural networks have been suc-
cessfully applied in the past for Jazz solo generation [19],
rhythm analysis [20], and music composition [15]. While
their applications are fairly similar, the way in which in-
formation is encoded in these two classes of models is
fundamentally different, with the former relying on fre-
quency counts of sequences occurring in the data, and the
latter learning distributed representations of sequences us-
ing networks of interconnected units with simple non-linear
activation functions.

In this paper, we present a model for music prediction
based on one such distributed model - the Restricted Boltz-
mann Machine (RBM) [18]. The following are some rea-
sons for this choice. Firstly, the inherent non-linearity of
the RBM makes it a suitable candidate for learning com-
plex patterns in data, such as those occurring in musical se-
quences. There exist efficient algorithms for training these
models [5,9]. The RBM, with its straightforward extensi-
bility to deep networks [10], has become a vital building
block for creating models that are capable of learning rep-
resentations of data at multiple levels of abstraction. More-
over, problems related to insufficient data and computing
power no longer pose limitations on the use of such dis-
tributed models as was the case in the past.

The model described here first analyses fixed-length se-
quences of musical pitch, and compares favourably to n-
gram models that were previously evaluated with a predic-
tion task on a corpus of monophonic MIDI melodies [17].
Its ability to make use of information in longer sequences
more effectively is in agreement with previous work in sta-
tistical language modelling [3]. The structure of the pro-
posed model ensures that it scales only linearly with the
length of sequences to be learned, and also with the num-
ber of symbols in data. This pitch-only version of the
model is then adapted to also make use of sequences of
note-durations in the melodies. In the process, we also pro-
pose an efficient way to represent this additional informa-
tion that takes advantage of the RBM’s structure and thus,
limits model complexity. We demonstrate an improvement
in results by combining the two models using ideas pro-
posed in multiple viewpoints for music prediction [6] us-
ing a simple arithmetic mean of their individual probability
estimates. A Matlab implementation of the model, along
with scripts used to generate the results in this paper, are
available upon request.



The remainder of this paper is organized as follows.
The next section introduces music prediction, and multi-
ple viewpoint systems as a framework for music prediction
with an analogy to natural language. Section 3 explains the
RBM and its discriminative interpretation which make up
the basis for the prediction model proposed in this paper.
This is followed by a description of the model itself, in
Section 4. An evaluation of the the model and its compari-
son with previously evaluated n-gram models is presented
Section 5, followed by discussion on possible directions
for future research in Section 6.

2. MUSIC PREDICTION WITH
MULTIPLE-VIEWPOINT SYSTEMS

In order to explain music prediction with multiple view-
points, the analogy to natural language is used here. In
statistical language modelling, the goal is to build a model
that can estimate the joint probability distribution of se-
quences of words occurring in a language L. A statistical
language model (SLM) can be represented by the condi-
tional probability of the next word w7 given all the previ-
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. T—1 .
ous ones [w1, ..., w(r—1)] (Written here as w; )), since

T
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The most commonly used SLMs are n-gram models, which
rely on the simplifying assumption that the probability of
a certain word in a sequence depends only on the immedi-
ately preceding (n — 1) words [14]. This is known as the
Markov assumption, and reduces (2) to

T
Pl) =[] Plwlwi_)) ) - @)

t=1

Following this explanation, musical styles can be inter-
preted as vast and complex languages [6]. The goal in
music prediction is to predict the continuation st of a se-
. (T-1) .
quence of musical events s, of a musical language S.
For each prediction, context information is obtained from
(T-1) . . .
a subsequence of events s (T—n+1) immediately preceding
sT. A musical event can be any directly observable or
derived musical facet such as pitch, note duration, inter-
onset interval, or a combination of two or more of such
facets. In music prediction, much in the same way as sta-
tistical language modelling, one is concerned with the fol-
lowing conditional distribution p(sT|s§T71) ), or under the
Markov property p(sT|sg::L)H)).

The framework of multiple-viewpoint systems for mu-
sic prediction [6] was developed with the aim to extend
statistical modelling techniques to domains, where events
have an internal structure and are richly representable by
exploiting this structure. One such domain is music, where
a musical piece can be expressed in terms of various mu-
sical dimensions such as pitch, duration, scale degree, etc.
The framework of multiple viewpoints aims at exploiting
information contained in these different dimensions, while

at the same time keeping a check on the dimensionality of
the models using these features. We limit our explanation
of multiple-viewpoint systems in this section to the case of
monophonic music, which is the focus of this paper.

As noted previously, a musical event s refers to the
occurrence of a note in a melody, without reference to
any particular property it may represent such as pitch, 101,
scale-degree, etc. The set of all representable events (the
event space) is denoted by the symbol £, and the set of all
sequences of events by £*. A fype is an abstract property
of events, such as pitch, scale-degree or duration. For ev-
ery type 7, there exists an associated partial function ¥,
which maps sequences of events in £* to elements of type
7. The set of all syntactically valid elements of type 7 (its
domain) is denoted by [7], and the set of all sequences rep-
resentable using elements of type 7 by [7]”.

A viewpoint comprises 1) a partial function ¥, : £* —
[7], and 2) a context model of sequences in [r]". The set
of all viewpoint types is categorized into basic viewpoints
and derived viewpoints, of which the latter tend to repre-
sent more abstract properties. In the present work, we are
interested in the prediction of the basic type pitch, which
refers to musical pitch. A linked viewpoint is used to model
correlations between any basic types in an event. Origi-
nally, it was proposed to achieve this through the use of a
product type, which represents the space made up of the
Cartesian product of the constituent basic types. Later in
section 4, we propose an efficient alternative to this that is
facilitated by the distributed model presented in this work.

A multiple-viewpoint system (MVS) is a set of models,
each of which is trained on sequences of one fype, whose
individual predictions are combined together in some way
to influence the prediction of the next event in a given
event sequence. Given a context s' 1 41 and an event sy,
each viewpoint 7 in an MVS must compute the probabil-
ity pr(s¢|si=} 41)- It is first necessary to convert the se-
quence s;_, ., in £ to a string in [7]. Each viewpoint
then predicts a distribution over [7]. Finally, these individ-
ual predictions are (if required) mapped to the basic type
T that is to be predicted, and combined using weighting
schemes or ranked lists for inference over individual view-
point systems. For example, {71, 73}, {72, 71 ® 73}, and
{72, 71 ® T2, 73} are multiple viewpoint systems. While
originally, n-gram models were proposed to be used with
the multiple viewpoints framework, we demonstrate how a
distributed model, such as the Restricted Boltzmann Ma-
chine used here, can serve as more efficient and scalable
alternative for improved prediction performance.

3. RESTRICTED BOLTZMANN MACHINES

The Restricted Boltzmann Machine (RBM) [18] is an undi-
rected, bipartite graph consisting of a set of r visible units
v and a set of ¢ hidden units h. These make up the visible
and hidden layers of the RBM respectively. The two layers
are fully connected to each other, but there exist no con-
nections between any two hidden units, or any two visible
units. Additionally, each of the hidden and visible units
is connected to its respective bias unit that always has the



value 1. The edge between the ;" visible node and the

Figure 1. A simple Restricted Boltzmann Machine with
four visible, two hidden, and no bias units.

i'" hidden node is associated with a weight w;;. All these
weights are together represented in an ¢ X r matrix W.
The weights of connections between visible units and their
respective biases is denoted by b, an r-dimensional vector.
Likewise, for the hidden units there is an g-dimensional
hidden bias c. The RBM is fully characterized by the three
parameters W, b and c. Figure 1 shows a simple RBM
with four visible and two hidden units, and the bias unit
ignored to better illustrate its bipartite structure. Owing to
this structure, the RBM exhibits the property of conditional
independence between the nodes of each of the hidden and
visible layers of the RBM when those of the other layer are
given. That is

p(hlv) = Hp (hjlv) 3)

p(vih) = Hp vilh) . “)

The values of the binary stochastic units in the hidden layer
given the visible layer (and vice versa) are given by the
logistic sigmoid function as p(h; = 1|v) = o(c¢; + Wj.v),
and p(v; = 1|h) = o(b; + W/ h) respectively.

The RBM is a special case of the Boltzmann Machine,
which is an energy-based model for representing probabil-
ity distributions [13]. In such energy-based models, prob-
ability is expressed in terms of an energy function. In the
case of the RBM, this function is expressed as

Energy(v,h) = —b'v—c'h—h'Wv. (5
Learning in energy-based models can be carried out in a
generative fashion, by updating the weights and biases in
order to minimize the overall energy of the system with re-
spect to the training data. This amounts to maximizing the
log-likelihood function of the joint probability distribution
p(v), which is given by

e—FreeEnergy(v)

= 6
p(v) 7 ; (6)
with Z = 37 e~ Freebneray(v) e |

FreeEnergy(v) = — logZe_Em”gy(v’h) . (D
h

While computing the exact gradient of the log-likelihood
function for p(v) is not tractable, an approximation of this

gradient called the Contrastive Divergence gradient has been
found to be a successful update rule for training RBMs
[5,9]. With the contrastive divergence update, the RBM
can be trained efficiently using gradient descent.

The RBM described above models the joint probabil-
ity p(v) of the set of visible units v. For music prediction
(Section 2), one has to model a conditional distribution of
the form p(y|x). It has been demonstrated in [12] how an
RBM can be used for a discriminative task such as classi-
fication, where it is known as a Discriminative Restricted
Boltzmann Machine (DRBM). The posterior class proba-
bility distribution of the DRBM has the form

Zp = e, h|x) ®)

efFreeEneTgJ(X,ec)

= C))

Zc’:l...c e—FreeEnergy(x,e.)

p(y = ec|x) =

where x is the input vector, and y is a vector that is a /-of-
C representation of the class (also known as one-hot en-
coding), with C being the number of classes. If x belongs
to a class ¢, then y = e., where e, is a vector with all val-
ues set to 0 except at position c. With respect to the general
RBM, x and y together make up the visible layer v.

Assuming a training set Dyrqin = {(Xi,yi)} where x;
and y; € {1,...,C} are the i-th input vector and target
class respectively, to train a DRBM generatively involves
minimizing the negative log-likelihood

‘Dtrat7b |

— > logp(xiyi) . (10)

i=1

‘Cgen (Dtrain) =

The RBM, used in a discriminative manner forms the
basis of the prediction model described in the next section.

4. A DISTRIBUTED MODEL FOR USE WITH
MULTIPLE VIEWPOINTS

The prediction model we present in this paper models the
conditional distribution p($t|8 i n)+1))' The model places
no restrictions on the type ass001ated with events in the
context Et 73 1) (source type), or the predicted event s;
(target type). In the simplest case, both are the same. In
the case where they are different, the performance of the
model depends on how informative the source types are of
the target type. In the present work, we demonstrate this
model with two cases where (1) both the source and target
viewpoint types are musical pitch, and (2) the source view-
points include pitch and duration with the target viewpoint
as pitch. For each monophonic melody (in the MIDI for-
mat) in a given dataset, sequences of the relevant source
and target types are first extracted using the MIDI Tool-
box [8]. These values are encoded as binary 1-of-|7| vec-
tors, where |7| is the size of the domain of type 7. In the
case where more than one source viewpoints exist, their
corresponding vectors are simply concatenated. Such an
idea is similar to that of the linked viewpoint type pro-
posed in [6]. There are however, two important distinc-
tions between the two. Firstly, the source and target view-
points must be identical in the case of the n-gram models



originally proposed for use with multiple-viewpoint sys-
tems, whereas this is not mandatory for the RBM-based
model. Secondly, a linked viewpoint between two arbi-
trary types 71 and 7o of domain sizes |71| and | 72| respec-
tively, would have a domain of size |71| X |2|. Thus, for
sequences of length n, the number of free parameters to
be estimated are (|71| X |72|)". In contrast, the number to
be estimated in case of the RBM-based model, with ¢ hid-
den units, is ¢ x ((n — 1) x (|71] + |72]) + |73]), where
T3 is the target type. Thus, the complexity of the latter
does not increase exponentially as in the case of the for-
mer. At the moment, the model only handles a single tar-
get type. It is also to be noted that the nodes of the visible
layer in the RBM represent a sequence of n events, thus
making the number of visible units of the underlying RBM
(n — 1) x (Jm1] + |72]) + |73]- Such a model only scales
linearly with the length of the learned sequences, as well
as the domain size of each of the involved viewpoint types.
Its structure is depicted in Figure 2.

It is worth mentioning here that this RBM-based model
adopts some features of the neural probabilistic language
model described in [3]. Both these models are similar in
the manner in which sequences (words in the case of one,
and musical pitch in the other) are presented as input to
their respective networks. Being the first to propose such
a framework for predicting word sequences, [3] suggested
the use of feed-forward, or recurrent neural networks. In
contrast, an energy-minimization approach is adopted here
to train an RBM-based model. Also in [3], an additional
stage of dimensionality reduction was also performed to
learn distributed word vectors in order to deal with a very
large vocabulary of words. This step was not found to be
strictly necessary in the present scenario where there are
relatively much fewer musical pitches and note-durations,
and is left to be explored in the future.
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Figure 2. The structure of the prediction model. The set

of nodes in the visible layer grouped together on the left
make up the context ngl)ﬂ) of the source type(s). The
set of nodes to the far right correspond to the target type.

To train the model generatively, a sequence sztfn +1)
is clamped to all the nodes in the visible layer. Training
is done using the first instantiation of the Contrastive Di-
vergence learning algorithm (CD-1). This simply means
that the model parameters are updated after a single step
of Gibbs sampling [9]. During prediction, the probability
of each of the possible pitch values in the prediction space
is determined using (9). Note that the distribution gener-
ated in this manner does not require any kind of smoothing
operation for unseen sequences, as in the case of n-gram

models. While it was found to be necessary in [17], that an
empirical evaluation of different smoothing techniques be
carried out in order to establish the most reliable one, such
a need does not arise in the case of the RBM-based model.

5. EVALUATION

In order to evaluate the proposed model in an application
independent manner, we refer to a recent study on n-gram
models for music prediction [17]. There, entropy — a com-
mon metric in statistical language modelling — was used to
evaluate the music prediction models. Given a probability
mass function p(s € S) = p(x = s) of a random variable
X distributed over a discrete alphabet S = {s1,..., sk}
such that the individual probabilities are independent and
sum to one, the entropy H (p) is defined as

H(p) == p(s)logy p(s) (11)

seS

The value of entropy, with reference to a prediction model,
indicates how uncertain it is about its predictions. A higher
value of entropy reflects greater uncertainty. In practice,
one rarely knows the true probability distribution of the
stochastic process and uses a model to approximate the
probabilities in (11). Cross entropy is a quantity which
represents the divergence between the entropy calculated
from the estimated probabilities and the source model. It
is computed over all the sequences of length n in the test
data Dy, as

1
|Dt65t|
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Hc (pmod7 Dtest) =

(12)
where p,,0q i the probability assigned by the model to
the last pitch in the sequence, given its preceding context.
Cross entropy approaches the true entropy of the sequence
as the number of test samples (| D5t |) increases.

Evaluation is carried out on a corpus of monophonic
MIDI melodies that cover a range of musical styles. This
is a collection of 8 datasets, previously used to evaluate n-
gram models for music prediction [17]. It consists of 152
Canadian folk melodies, 185 Bach chorales, 91 Alsatian
folk melodies, 119 Yugoslavian folk melodies, 93 Swiss
folk melodies, 104 Austrian folk melodies, 213 German
folk melodies, and 237 Chinese folk melodies and a total
of 54, 308 events (8893 bigrams, 8708 trigrams of musical
events). Also in [17] two different models were evaluated,
both individually and in combination. The first of these
is a Long-Term Model (LTM), that is governed by struc-
ture and statistics induced from a large corpus of sequences
from the same genre. And the other is a Short-Term Model
(STM) which relies on structure and statistics particular to
the melody being predicted. The notion of LTM and STM
was introduced in [6]. The RBM-based model deals only
with long-term effects that are induced from a corpus, and
is thus compared with the performance of the LTM.

A 10-fold cross-validation technique is used for evalu-
ation, where each fold contains a hold-out test set Dycq:



and the remaining data Dy, for learning. An internal 3-
fold cross-validation is performed within Dy, for model
selection. The best training hyper-parameters are chosen
based on the validation error in this step, and a model with
this set of hyper-parameters is then trained on the entire
Dirain and evaluated on Diyes. Training is done using
mini-batch gradient descent with a batch size of 100 sam-
ples. The RBM was trained over 300 epochs. During
model selection, the learning rate A was varied linearly
between 0.02 and 0.1 in steps of 0.04 and the weight-
regularization parameter we,s; between 0.0002 and 0.001
in steps of 0.0004. The momentum parameter v, was set
to 0.5 during the first five epochs and then increased to 0.9
for the rest of the training.

In this paper, we carry out three types of evaluation. The
first measures the information content of pitch-only ver-
sion of the proposed model in terms of entropy and com-
pares it with a similar evaluation carried out on n-gram
models for music prediction in [17]. It was observed that
the RBM-based model compares favourably with the best
of the n-gram models owing to the fact that it makes use of
information in longer sequences. In the second, we com-
pare a variant of the model with source types as pitch and
duration, and target type as pitch to its n-gram model based
linked viewpoint counterpart. And last, we combine these
two models using mixture of experts and demonstrate how
this can further improve the model performance in com-
parison to the individual models.

The first evaluation is carried out separately for each of
the individual datasets. Event-sequence length n is varied
in the range [2, 9], and it was found that this range of values
was sufficient for the RBM-based model to outperform the
n-gram models on all but one of the datasets considered
here (Bach chorales). Due to limited space, only the av-
erage information content values over all the datasets are
presented in Table 1. A similar trend was observed for
each individual dataset in the corpus.

Overall, the RBM-based model performs very compet-
itively with respect to the best n-gram model-based LTMs
evaluated in [17]. This is illustrated in Table 1. Here,
RBM-n refers to a model which is trained on pitch se-
quences of length n. The column Markov corresponds to
the LTM with a global order bound 2 (3-gram), which was
found to do best among those with a limited order bound.
And Markov* refers to the LTM with an unbounded or-
der. The RBM-based model, at one point or another per-
forms on par with, or better than the best LTM. The value
of n where a model performs better than the unbounded
order Markov model happens to be different on different
datasets, and typically occurs at n = 3 or n = 4. These
differences, it is believed, might be attributed to the infor-
mation dynamics of the different musical styles considered
here. The value of n = 6 with average cross entropy 2.737,
and n = 8 with average cross entropy 2.734 can be con-
sidered here as the best cases. It is to be noted that, al-
though the case of n = 8 has a slightly lower cross entropy
value, this has actually increased a little on some of the
datasets when compared to n = 6. Another observation,

along the same lines, is that the RBM-based model seems
to show signs of deterioration in performance for n > 6.
We suspect that the performance of these longer context
models can be improved with a search over a larger hyper-
parameter space, but leave this to be explored in the future.
A similar trend was observed in the case of the Markov
models in [17], but at a much lower global order bound of
3. This indicates the RBM-based model is able to make
information available in longer event sequences.

In the second evaluation, we compared te information
content of the single and multiple source type models (pitch
and pitch with duration respectively) using the same tar-
get type (pitch), on the Bach chorale subset of the corpus.
The results are shown in Table 2. One can conclude, from
the lack of significant improvements of the multiple source
type model over the single source type model, that this was
not a very good choice of viewpoints to link, given the
dataset. This is the case with n-gram models too. How-
ever, on an average the RBM-based model maintains its
performance, with marginal improvements in the case of
some values of sequence length n. The relative improve-
ments of both classes of models with the addition of the
duration type, in Table 2, indicate that the representation
for multiple source types proposed in Section 4 as an al-
ternative to the linked viewpoints may indeed be effective.

n 2 3 4 5

RBM (single) 2732 | 2.554 | 2.510 | 2.465

RBM (multiple) 2715 | 2.552 | 2.513 | 2.464

RBM (combination) | 2.686 | 2.525 | 2.489 | 2.451

Markov(single) 2737 | 2.565 | 2.505 | 2.473

Markov(linked) 2.761 | 2.562 | 2.522 | 2.502

Table 2. Information content values of the single and mul-
tiple source type RBM-based models, their combination,
and respective n-gram model counterparts over a range of
sequence lengths n.

To illustrate the application of the proposed RBM-based
model to multiple viewpoints for music prediction, we com-

bine the single and multiple source type models using mixture-

of-experts. This simply involves taking the arithmetic mean
of the distributions each of the two models predicts for
pitch. The results of this are also illustrated in the third
row of Table 2. While the improvement cannot be con-
sidered significant in some of the cases, there is reason to
pursue this further in the future.

6. CONCLUSIONS & FUTURE WORK

In this paper, we present a distributed model based on the
Restricted Boltzmann Machine for music prediction. It is
demonstrated how such models can be more efficient and
scalable alternatives to n-gram models for simultaneously
modelling sequences in multiple musical dimensions. The
proposed model is evaluated in comparison with n-gram
models and is found to compare favourably with them. It



Markov | Markov* | RBM-2 | RBM-3

RBM-4

RBM-5 | RBM-6 | RBM-7 | RBM-8 | RBM-9

2.948 2.878 3.059 2.894 2.815

2.771 2.737 2.743 2.734 2751

Table 1. Comparison of prediction cross entropies in the pitch-only case between n-gram models with a global order bound
of 2 (Markov), unlimited order (Markov*) and RBM-based models with n ranging between 2 and 9 (RBM-2 to RBM-9
respectively). Overall, the prediction performance of the latter improves until RBM-6, followed by signs of deterioration

in some of the datasets.

also makes use of information in longer event sequences
than n-gram models. A simple application of the use of
the proposed RBM-based model with multiple viewpoints
for music prediction framework is also presented here.

In the future, we are interested to further study the per-
formance of the proposed RBM-based model when com-
bined with other musical dimensions such as interval, scale-
degree, etc., and to explore more effective ways of combin-
ing models. The present model itself can be potentially ex-
tended into a deep network, as demonstrated in [9], which
is expected to improve its performance. It would be inter-
esting to see how the model can be made to predict mul-
tiple target types simultaneously. Also of interest are the
applications of this model to MIR tasks such as melodic
phrase segmentation and melody classification, and to aid
music transcription systems.
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Paper B: Review

This paper describes a variant on an existing method for predicting pitches, one after another, of
a previously unseen melody, using distributions calculated from a database of training melodies.
The new aspect of this work is the Restricted Boltzmann Machine (RBM), which replaces the
Prediction by Partial Match (PPM) scheme used by Pearce and Wiggins (2004) and Conklin and
Witten (1995) for calculation of the probability distributions. The RBM is claimed to be able
to take into account greater temporal dependencies than PPM, hence ‘distributed’. The link
between the calculated probability distributions and pitch prediction involves selecting the pitch
associated with the maximum probability in the distribution, at each point in time. In this way,
the probability and entropy of pitches in a previously unseen test melody can be calculated, with
low cross entropy (the chosen evaluation metric) taken to mean that both 1) the combination of
musical dimensions employed to calculate the distributions, and 2) the calculation scheme, were
appropriate for capturing aspects of the training music’s structure and style. It is also possible
to generate melodies based on the training data, again by selecting the pitch associated with the
maximum probability in the distribution at each point in time.

Availability of software and data

1. The authors should be given credit for mentioning that a Matlab implementation of the model
is available upon request.

Motivation for MIR

2. With regards benefit to the MIR community, I agree with the authors that interesting po-
tential applications of the current work include melody segmentation, classification, and music
transcription systems. You should mention these three applications in the introduction rather
than the final sentence, to motivate why this paper was submitted to ISMIR, and not to one
of the more suitable outlets for work on modeling musical style (e.g., International Conference
on Computational Creativity). The transcription application seems a bit tenuous, given there
already exist robust monophonic transcription systems. If improving polyphonic transcription is
the aim instead, how will your system be adapted to polyphonic input? Telling the MIR commu-
nity that they need this kind of work in order to improve audio engineering or machine learning
solutions is a hard sell, but one that I back. The paper would be improved by following through
with an evaluation of one of these potential applications, or for instance showing the incorrect
output of a transcription algorithm and the corrections suggested with the current approach.



Selection of viewpoints

3. The current paper, Pearce and Wiggins (2004), and Conklin and Witten (1995) operate on
the pitch of melodies; melodies that may be in any one of several keys. Please can you clarify
whether melodies in the current paper are transposed prior to running the model? Does leaving
the melodies untransposed mean that the MIDI note number sequence (64, 65) would be analysed
as one in the same thing, whether the current melody is in C major, F major, etc.? This would
lead to ‘smearing’ of well known scale-degree dependencies and calculated probabilities. For
instance, in F major chorale melodies, 64 leads to 65 more often than to any other MIDI note
number, but this dependency may be masked by conflating the analysis with C major melodies,
where 64 leads to 62 most often, say. I appreciate that some of Conklin and Witten’s (1995)
viewpoints (e.g., intfref seqint) are transposition-invariant. As far as I can tell, yours are not,
and I see this as a fairly serious musical issue.

4. In future work you acknowledge the need to apply the model to other viewpoint combina-
tions. Previous work has established some promising combinations (Conklin and Witten, 1995;
Pearce and Wiggins, 2007). Please clarify why one of the most successful combinations from
either of the above was not included in the present work also.

Modeling sectional repetition, and nested repetition

5. ‘In music, what happens in measure 5 may directly influence what happens in measure
55, without necessarily affecting any of the intervening material’ (Cope, 2005, p. 98). You are
allowing for a slightly larger temporal distribution of dependency than Pearce and Wiggins (2004)
and Conklin and Witten (1995), but nowhere near as much as that alluded to by Cope. Even
in your shorter (than 55 bars) melodies there will be sectional repetitions, in the Bach chorales
at least (some marked with repeat signs, others not). In terms of alterations to the paper, you
do mention extensibility to deep networks, but I think you need to link it to the music-modeling
shortcoming that this extension would aim to address (e.g., the Cope quotation). You may
be interested in Collins (2011, PhD thesis, Improved methods for pattern discovery in music,
with applications in automated stylistic composition) section 9.3 for a description of how to
incorporate sectional and nested repetitions into the generation process (accompanying code at
www.tomcollinsresearch.net). Also, if you can get hold of it (e.g., British Library), see

Carl Czerny. School of practical composition, volume 3. Robert Cocks & Co, London, UK,
1848. (Year of publication is approximate)

for an interesting historical reference to ‘filling’ predefined forms such as AABA. For interest’s
sake I mention it has been shown recently that listeners time-varying emotional repsonses exhibit
characteristic behaviour at the beginning of sectional repetitions:

Livingstone, Steven R., Palmer, Caroline, and Schubert, Emery, Emotional response to mu-
sical repetition, in Emotion 12(3) (2012), 552-567.

Evaluation

6. The evaluation methodology adheres to Pearce and Wiggins (2004), in that entropy-based
measures are employed. I do not think there is any harm in citing Conklin and Witten (1995)
at this point as well, as they also use entropy-based measures as an evaluation method.

7. The authors’ justification for using entropy-based measures is that it provides an ‘application-
independent’ evaluation. Since the first sentence of your introduction mentions ‘[w]hether or not
computational models can capture elements of style and structure in tonal music’, however, why



is a listening study along the lines of Pearce and Wiggins (2001, 2007) not being employed as
part of the evaluation? Pearce and Wiggins (2001, Experiment 1) involved asking listeners to
distinguish between computer-generated and human-composed melodies, and Pearce and Wig-
gins (2007) involved listeners rating a mix of such melodies in terms of stylistic success on a 1-7
scale. The Pearce and Wiggins (2001, 2007) listening study methodology could address your
introductory question about capturing elements of style and structure, so these need to be men-
tioned at least as an alternative approach. Recently Collins (2011) combined the methodologies
of the aforementioned studies, and also used two groupsconcertgoers and expertsto shed light on
the influence of expertise.

8. At the very end of the paper you mention some applications of pitch prediction other than
melody generation (which will be what most readers familiar with this literature have in mind).
Moving mention of these other applications (melodic phrase segmentation and melody classifica-
tion, and to aid music transcription systems) to the introduction could make the lack of listening
study less conspicuous. It will also mean that the first sentence of Section 5, justifying use of
cross-entropy in terms of ‘application-independence’, refers back to some concrete applications.

9. MIR readers may be uncomfortable with a results section that contains tables of numbers
without any mention of standard deviations or significance testing. When you present the mean of
the 10 cross-validation folds, why not report the standard deviation as well? I am having trouble
telling for instance whether 2.734 for RBM-8 is significantly different from 2.878 for Markov*.
The significance of this difference is pivotal for assessing the contribution being made by RBM.
Plots with error bars rather than tables would be preferable, facilitating visual comparison and
enabling display of metrics for the mean over all datasets, and perhaps one or two of the individual
corpora as well.

10. There is a disconnect between the introduction of Table 1 in the text (‘average information
content values over all datasets are presented in Table 1’) and the table caption (‘Comparison
of prediction cross entropies...”’). Please clarify, especially as entropy and cross entropy are
introduced in equations (11) and (12), but not information content. Something like this would
do: ‘IC = log(p), low information content corresponds to a stronger model and vice versa’).

11. Tt is great that the authors try to achieve direct comparison with Pearce and Wiggins
(2004), in terms of datasets employed and models included in evaluation. A reference to the
model abbreviation in Table 5 of Pearce and Wiggins (2004) that is most directly comparable
would be extremely helpful (my guess is Table 5, model C*1, as the value agrees with your Table
1, Markov*): if not, an explanation of why this comparison is not appropriate.

12. Further to previous point, the best-performing model in Pearce and Wiggins (2004) is a
combined LTM-STM model, which has a best cross-entropy score of 2.342. This is quite a bit
lower than the best RBM cross-entropy, so I am wondering whether the RBM would ever be able
to reach this level.

13. Apart from issues raised above, description of the evaluation procedure is generally good,
and it is great to see multiple corpora being modelled in parallel.

Music examples

14. In the bad old days of this research area, weak papers finished with a music example or two
and said ‘this is the kind of music predicted/generated by our system, and it sounds pretty good
to us.” Strong papers in this area today offer some kind of quantitative analysis (ANOVA on
listening study, stepwise selection on variables calculated from the model output to identify weak
features, entropy measures as used by you), *and* some musical examples from the model so that
the authors can interpret the quantitative analysis for the reader, shedding light on how the new



modelling attempt leads to an improvement in capturing aspects of style and structure. This
paper is somewhere in between, and would be greatly improved by including some discussion of
generated music examples.

Extension to polyphonic music

15. Please mention in future work the prospects for applying this method to the prediction of
polyphonic music. I am not saying this method in particular has to predict/generate polyphonic
output: it is clear to me why models that generate stylistically successful melodies are useful
in themselves (a common compositional strategy being to create the melody first, followed by
harmonic or contrapuntal development). In future work, however, it would be exciting to see
this whole prediction/generation strategy being modelled, not just the first half. (I accept that
it may be appropriate to end the folk song modelling at melody-only.)

Suggested cuts in order to address the above comments

While the following sections are interesting and well written, I do not find them to be as important
as providing clarifications for the points I made above:

16. Shorten Section 2, giving a two-paragraph summary of multiple viewpoint systems,
and referring the reader to Pearce and Wiggins (2004) and Conklin and Witten (1995) for the
mathematical details.

17. Shorten the first column of Section 5, removing details about the corpus that you do not
require for interpreting results later in the section. Again the details are in Pearce and Wiggins
(2004) I think.

18. Paragraph above Figure 2 could go.

Minor corrections

19. Are marked repetitions expanded in your handling of the music data?

20. Last sentence of first paragraph of introduction. You describe Cope (1996) as ‘rule-
discovery’. ‘Recombination of existing music’ is more accurate.

21. p. 1 second column second paragraph second line. Use a longer hyphen and without
spaces either side. E.g., ‘“— in latex should do it.

22. p. 2 first column penultimate paragraph fifth line from bottom. ‘of two or more of such’,
the second ‘of’ is unnecessary.

23. p. 2 first column final paragraph third line from top. ‘domains, where’, the comma is
unnecessary.

24. p. 3 first column top. Something weird going on with latex here, in placing a line of text
then the figure. Experiment with \begin{figurel}[t] to see if this solves the issue.

25. p. 3 first column second line below Figure 1. ‘an q r matrix’ should read ‘a q r matrix’.

26. p. 5 second column second paragraph first line. ‘compared te information’ should be
‘compared the information’.

27 p. 5 second column second paragraph seventh line from bottom. ‘on an average’ should
be ‘on average’.
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ABSTRACT

The analysis of sequences is important for extracting in-
formation from music owing to its fundamentally temporal
nature. In this paper, we present a distributed model based
on the Restricted Boltzmann Machine (RBM) for melodic
sequences. The model is similar to a previous successful
neural network model for natural language [2]. It is first
trained to predict the next pitch in a given pitch sequence,
and then extended to also make use of information in se-
quences of note-durations in monophonic melodies on the
same task. In doing so, we also propose an efficient way
of representing this additional information that takes ad-
vantage of the RBM’s structure. In our evaluation, this
RBM-based prediction model performs slightly better than
previously evaluated n-gram models in most cases. Re-
sults on a corpus of chorale and folk melodies showed that
it is able to make use of information present in longer con-
texts more effectively than n-gram models, while scaling
linearly in the number of free parameters required.

1. INTRODUCTION

Sequential structure in music influences our notions of mu-
sical style, similarity and the emotions we associate with
it. The analysis of sequences in musical scores and equiv-
alent symbolic representations of music is an integral part
of Music Information Retrieval, with applications such as
music classification [6], computational musicology [26],
music creation [19], and music source separation [10]. In
the past, this analysis has often been carried out using mu-
sic generation systems [1,4, 8,13, 18].

The present research is based around previous work that
adopted ideas proposed in information theory to music [7].
There, Multiple-viewpoint Systems for Music Prediction
were introduced as a detailed re-interpretation of the key
ideas of information theory [22] in music, through an anal-
ogy between language and musical style. In that work and
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what followed [21], Markov models were employed for
learning melodic subsequences. While this is a reason-
able choice, Markov models are often faced with a prob-
lem related to data sparsity known as the curse of dimen-
sionality. This refers to the exponential rise in the num-
ber of model parameters with the length of the modelled
subsequences. Recent research in language modelling has
demonstrated that neural networks can be a suitable al-
ternative to more widely used n-gram and variable-order
Markov models [2, 5, 17]. There have been some initial
results on the success of such models in music [3, 24].

In this paper, we present a model for melody predic-
tion based on one such neural network — the Restricted
Boltzmann Machine (RBM) [23]. The choice is motivated
by the following. Firstly, the inherent non-linearity of the
RBM makes it a suitable candidate for learning complex
structures in data, such as those occurring in musical se-
quences. There exist efficient algorithms for training this
model [11,25]. The RBM, with its straightforward exten-
sibility to deep networks [12], has become a vital building
block for creating models that are capable of learning fea-
tures from the data at multiple levels of abstraction.

We describe here a model for fixed-length subsequences
of musical pitch, which compares favourably to n-gram
models that were previously evaluated with a prediction
task on a corpus of monophonic MIDI melodies [21]. This
pitch-only version of the model is then adapted to also
make use of note-durations in the melodies, on the same
pitch-prediction task. In doing so, we also propose an effi-
cient way to represent this additional information, which
takes advantage of the RBM’s structure and thus limits
model complexity. The structure of the proposed model
ensures that it scales only linearly with the length of sub-
sequences to be learned and with the number of symbols
in the data. We demonstrate an improvement of results by
combining the two models in a manner similar to [7] us-
ing the arithmetic mean of their individual probability es-
timates. An implementation of the model in Python, along
with scripts used to generate the results in this paper, are
available upon request.

The remainder of this paper is organized as follows.
The next section introduces music prediction and multiple
viewpoint systems as a framework for music prediction.
Section 3 explains the RBM and its discriminative inter-
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pretation which make up the basis for the model proposed
in this paper. This is followed by a description of the model
itself in Section 4. An evaluation of the the model and its
comparison with previously evaluated n-gram models is
presented in Section 5, followed by discussion on possible
directions for future research in Section 6.

2. MUSIC PREDICTION WITH
MULTIPLE-VIEWPOINT SYSTEMS

In order to explain music prediction with multiple view-
points, the analogy to natural language is used here. In
statistical language modelling, the goal is to build a model
that can estimate the joint probability distribution of subse-
quences of words occurring in a language L. A statistical
language model (SLM) can be represented by the condi-
tional probability of the next word wr given all the previ-

ous ones [w1, . .., wp—_1)] (Written here as wlT 1)) as

T

HP

The most commonly used SLMs are n-gram models, which
rely on the simplifying assumption that the probability of a
word in a sequence depends only on the immediately pre-
ceding (n — 1) words [16]. This is known as the Markov
assumption, and reduces (1) to

(t 1) (1)

HP wf|w(f n+1)) 2)

Following this approach, musical styles can be inter-
preted as vast and complex languages [7]. In music pre-
diction, one is interested in learning the joint distribution
of musical event sequences s1 in a musical language S.
Much in the same way as an SLM, a system for music pre-

diction models the conditional distribution p(s; |s§t_1) ), or

under the Markov assumption p(sf|s(t 717)+1)). For each
prediction, context information is obtained from the events
58:;)-#1) immediately preceding s;. Musical events have a
rich internal structure and can be expressed in terms of di-
rectly observable or derived musical features such as pitch,
note duration, inter-onset interval, or a combination of two
or more such features. The framework of multiple-view-
point systems for music prediction [7] was proposed in or-
der to efficiently handle this rich internal structure of mu-
sic by exploiting information contained in these different
musical feature sequences, while at the same time limiting
the dimensionality of the models using these features. In
the interest of brevity, we limit ourselves to an informal
discussion of multiple-viewpoint systems for monophonic
music prediction and refer the reader to [7] for the under-
lying mathematical formulation.

A musical event s refers to the occurrence of a note in
a melody. A viewpoint type (henceforth written as type)
7 refers to any of a set of musical features that describe
an event. The domain of a fype, denoted by |7| is the set
of possible values of that type. A basic type is a directly
observable or given feature such as pitch, note duration,
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Figure 1. A simple Restricted Boltzmann Machine with
four visible, two hidden, and no bias units.

key-signature or time-signature. A derived type can be de-
rived from any of the basic types or other derived types.
A linked viewpoint type is created by taking the Cartesian
product over two or more types, thus “linking” them.

A multiple-viewpoint system (MVS) is a set of mod-
els, each of which is trained on subsequences of one type,
whose individual predictions are combined in some way
to influence the prediction of the next event in a given
event sequence. Given a context sg:;)ﬂ and an event s;,
each viewpoint 7 in an MVS must compute the probabil-
ity p-(s¢|s (: 2)4-1))' While originally n-gram models were
proposed to be used with the multiple viewpoints frame-
work, we demonstrate how a distributed model such as the

RBM used here can serve as a scalable alternative.

3. RESTRICTED BOLTZMANN MACHINE

The Restricted Boltzmann Machine (RBM) is an undirected
graphical model consisting of a set of 7 visible units v and
a set of ¢ hidden units h. These make up the visible and
hidden layers of the RBM respectively. The two layers
are fully inter-connected but there exist no connections be-
tween any two hidden units, or any two visible units. In its
original form, the RBM has binary, logistic units in both
layers. Additionally, the units of each layer are connected
to a bias unit whose value is always 1.

The edge between the i*" visible node and the j** hid-
den node is associated with a weight w;;. All these weights
are together represented in a weight matrix W of size ¢ xr.
The weights of connections between visible units and the
bias unit are contained in an r-dimensional visible bias
vector b. Likewise, for the hidden units there is a g-dimen-
sional hidden bias vector c. The RBM is fully character-
ized by the parameters W, b and c. Figure 1 shows a sim-
ple RBM with four visible and two hidden units, without
the bias unit to better illustrate its bipartite structure.

The activation probabilities of the units in the hidden
layer given the visible layer (and vice versa) are given by
the logistic sigmoid function as p(h; = 1|v) = o(c; +
W;.v), and p(v; = 1|h) = o(b;+ W/ h) respectively. Due
to the RBM’s bipartite structure, the activation probabili-
ties of the nodes within one of the layers are independent,
if the activation of the other layer is given, i.e.

3)

)
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The RBM is a special case of the Boltzmann Machine,
which is an energy-based model for representing probabil-
ity distributions [15]. In such energy-based models, prob-
ability is expressed in terms of an energy function. In the
case of the RBM, this function is expressed as

Energy(v,h) = -b'v—c'h—h"Wv. (5
Learning in energy-based models can be carried out in a
generative fashion, by updating the weights and biases in
order to minimize the overall energy of the system with re-
spect to the training data. This amounts to maximizing the
log-likelihood function of the joint probability distribution
p(v), which is given by

efFreeEnergy(v)

p(v) = 7 ; (6)

with Z = 3" e Freebneray(v) where
v b

FreeEnergy(v) = — logZe_E"ergy(v’h) .
h

While computing the exact gradient of the log-likeli-
hood function for p(v) is not tractable, an approximation
of this gradient called the Contrastive Divergence (CD)
gradient has been found to be a successful update rule for
training RBMs [11]. With the CD update, the RBM can be
trained efficiently.

The RBM described above models the joint probability
p(v) of the set of visible units v. However, as described in
Section 2, we are interested in a conditional distribution of
the form p(y|x). It has been demonstrated in [14] how an
RBM can be used for a discriminative task such as classifi-
cation. The posterior class probability distribution of such
an RBM has the form

p(y = ecx) =) ply = ec,hlx) ®)
h

efFreeEnergy(x,ec)

Zc’:l...C e—FreeEnergy(x,ec/)

9)

where x is the input vector, and y is a vector that is a /-of-
C representation of the class (also known as one-hot en-
coding), with C' being the number of classes. If x belongs
to a class ¢, then y = e, where e.. is a vector with all val-
ues set to 0 except at position c. With respect to the RBM,
x and y together make up the visible layer v.

Assuming a training set Diqin = {(Xi,y:)} where x;
and y; € {1,...,C} are the i-th input vector and target
class respectively, training the RBM generatively involves
minimizing the negative log-likelihood

[Dirainl

‘cgen(,Dtrain) = - Z 1ng(xiaYi) . (10)
=1

The RBM thus used in a discriminative manner, forms
the basis of the prediction model described in the next sec-
tion.
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4. A DISTRIBUTED MODEL FOR USE WITH
MULTIPLE VIEWPOINTS

The prediction model we present in this paper models the

conditional distribution p(st|sg:;)+l)) It places no re-

strictions on the fypes associated with events in the con-
text 58’__731) (input type), or the predicted event s; (target
type). In the simplest case, both are the same. In the case
where they are different, the performance of the model de-
pends on how informative the input types are of the target
type. In the present work, we demonstrate this model with
two cases where (1) both the input and target viewpoint
types are musical pitch, and (2) the input types are pitch
and duration, and the target type pitch. The choice of the
additional input type in the second case was motivated by

simplicity and to lay emphasis on the representation.

For each monophonic melody (in MIDI format) in a
given dataset, sequences of the relevant input and target
types are first extracted using the MIDI Toolbox [9]. These
values are encoded as binary 1-of-|7| vectors, where |7| is
the size of the domain of type 7. In the case where more
than one input type exists, their corresponding vectors are
simply concatenated. Such an idea is similar to that of the
linked viewpoint type proposed in [7]. There are however,
two important distinctions between the two. Firstly, the
input and target types must be identical in the case of the
n-gram models originally proposed for use with multiple-
viewpoint systems, whereas this is not a requirement for
the RBM model. Secondly, a linked viewpoint between
two arbitrary types 71 and 72 of domain sizes |71 | and |72
respectively, would have a domain of size |71| x |12] in
the case of the n-gram models. Thus, for subsequences of
length n, the number of free parameters to be estimated
are (|71| x |72|)™ in the worst case. In contrast, the number
to be estimated in case of the RBM model, with ¢ hid-
den units and r visible units, is (¢ X ) + ¢ + r, where
r=(n—1)x[(|7|+ 1) + (|72| + 1)] + |3/, and 73 the
target type. The additional visible unit added to the repre-
sentation of each of the input types 7 and 7» in the con-
text is 1 when the corresponding event is absent at the start
of a melody. Such a model only scales linearly with the
length of the learned subsequences as well as the domain
size of each of the involved viewpoint types (assuming ¢
is constant). Its structure is depicted in Figure 2. Here we
considered only those cases with a single target type.

© 0 0 O
w

- Oh

[@ 00 -0 -

S(t—n+2)

S(t-1)

o)

S(t—n+1)

Figure 2. The structure of the prediction model. The set
of nodes in the visible layer grouped together on the left
make up the context sg:i)ﬂ) of the input type(s). The set

of nodes 5y to the far right corresponds to the target type.



14th International Society for Music Information Retrieval Conference (ISMIR 2013)

To train the model generatively, a subsequence szt_n +1)
is clamped to all the nodes in the visible layer. Training
is done using the first instantiation of the Contrastive Di-
vergence learning algorithm (CD-1). This simply means
that the model parameters are updated after a single step
of Gibbs sampling [11]. During prediction, the probabil-
ity of each of the possible pitches in the prediction space
is determined using (9). The distribution generated in this
way does not require any kind of smoothing operation for
unseen subsequences unlike n-gram models, where in [21]
an empirical evaluation of different smoothing techniques
was found necessary to establish the most reliable one.

5. EVALUATION

In order to evaluate the proposed prediction model, we
make a comparison to a previous study of n-gram models
for music prediction in [21]. There, cross-entropy was used

to measure the information content of the models. This
quantity is related to entropy, which is defined as
H(p) = - p(s)log, p(s) - (11)

ses

where p(s € S) = p(x = s) is the probability mass func-
tion of a random variable x distributed over a discrete al-
phabet S = {s1,..., sk} such that the individual proba-
bilities are independent and sum to 1. The value of en-
tropy, with reference to a prediction model, is a measure of
the uncertainty of its predictions. A higher value reflects
greater uncertainty. In practice, one rarely knows the true
probability distribution of the stochastic process and uses
a model to approximate the probabilities in (11). An es-
timate of the goodness of this approximation can be mea-
sured using cross-entropy (H.) which represents the diver-
gence between the entropy calculated from the estimated
probabilities and the source model. This quantity can be
computed over all the subsequences of length n in the test
data Dicst, as

- ZSTEDtmt 10g2 pmod(sn|sgn_1))

Hc(pmod;Dtest) - |Dt f|
est

(12)
where py,0q 1 the probability assigned by the model to the
last pitch in the subsequence given its preceding context.
Cross-entropy approaches the true entropy as the number
of test samples (|Dyest|) increases.

Evaluation was carried out on a corpus of monophonic
MIDI melodies that cover a range of musical styles. The
corpus is a collection of 8 datasets containing a total of
54,308 musical events and was also used to evaluate n-
gram models for music prediction in [21]. There, two dif-
ferent models were evaluated both individually and in com-
bination. The first of these was a Long-Term Model (LTM),
that was governed by structure and statistics induced from
a large corpus of sequences from the same musical style.
And the other was a Short-Term Model (STM) which re-
lied on structure and statistics particular to the melody be-
ing predicted. The prediction model presented here deals
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only with long-term effects that are induced from a cor-
pus, and is thus compared with the two best performing
LTMs in [21] of unbounded order (labelled there as C*I)
and order bound 2 respectively. To facilitate a direct com-
parison between the two approaches, the melodies are not
transposed to a default key.

For the RBM model, different hyperparameters were
evaluated through a grid search over the learning rate A =
{0.01,0.05}, the number of hidden units ny;q = {100,
200, 400}, and the weight-cost wees: = {0.0001, 0.0005}.
Each model was trained using mini-batch gradient descent
over 500 epochs with a batch size of 100 samples. The
momentum g, was set to 0.5 during the first five epochs
and then increased to 0.9 for the rest of the training. Each
model was evaluated with 10-fold cross-validation.

We carry out three types of evaluation. The first mea-
sures the information content of the pitch-only version of
the proposed model using cross-entropy, and compares it
to the n-gram models of [21]. It was observed that the
RBM model compares favourably with the best of the n-
gram models by making better use of information in longer
contexts. In the second evaluation, we compare a variant
of the model with input types pitch and duration and tar-
get type pitch to its pitch-only counterpart. And lastly, we
combine these two models using mixture-of-experts and
demonstrate how this can further improve the model per-
formance in comparison to the individual models.

The first evaluation is carried out with cross-validation
separately for each of the individual datasets. The con-
text length is varied between 1 and 8. It was found that
the RBM models with context length greater than 2 per-
form better than corresponding n-gram models on aver-
age. This is illustrated in Figure 3. An RBM model of
suitable context length perform marginally better than the
best-performing n-gram model — that of unbounded or-
der. The same is the case with the best bounded-order n-
gram model (of context length 2) and the RBM model of
the same context length. While it was found that the perfor-
mance of bounded order n-gram models tends to worsen
on further increasing the context length, the performance
of RBM models continues to improve until a context length
of 4. The value of n where the RBM model performs better
than the n-gram models of unbounded order is different on
different datasets, and typically occurs between n = 3 and
n = 7. The best average model cross-entropy of 2.819 is
reached for a context length of 4. For models using longer
contexts an increase in training performance was accom-
panied by a slight worsening of test performance, indicat-
ing overfitting. We suspect that the overall performance
of the RBM models can be further improved with an op-
timized grid-search strategy in the hyper-parameter space,
but leave this to be explored in the future. The optimal
number of hidden units in our search was 100 across all
datasets for almost all context lengths, leading to a linear
increase in model size with context length.

In the second evaluation, we compared the cross-entropies
of the single and multiple input type models (pitch and
pitch with duration respectively) using the same target type
(pitch), on the Bach chorale subset of the corpus. The re-
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Figure 3. Variation in average cross-entropy of the prediction models with context length [ (with standard deviation across
folds for the RBM model). The cross-entropy of the RBM models progressively decreases until [ = 4, while that of the
n-gram models evaluated in [21] is minimal at [ = 2 and increases thereafter. The performance of the n-gram model of

unbounded order is indicated by the dashed line.

sults are shown in Table 1. The choice of adding duration
was motivated by simplicity but the results show that it was
not ideal for improving predictions. This conclusion is also
supported by a similar trend observed with n-gram models,
where a small deterioration in performance was observed
on adding duration. The RBM model shows small per-
formance improvements for some context lengths. This
indicates that the representation for multiple input types
proposed in Section 4 as an alternative to the linked view-
points may indeed be effective.

l 1 2 3 4
n-gram (p) 2.737 | 2.565 | 2.505 | 2.473
n-gram(p +d) | 2.761 | 2.562 | 2.522 | 2.502
RBM (p) 2.698 | 2.530 | 2.490 | 2.470
RBM(p + d) 2.660 | 2.512 | 2.481 | 2.519
RBM (combined) | 2.663 | 2.486 | 2.462 | 2.413

Table 1. Cross-entropies of the single (pitch) and mul-
tiple (pitch, duration) input type RBM models and their
combination over a range of context lengths / on the Bach
chorales dataset. The individual RBM models compare
favourably with corresponding n-gram models.

To illustrate the application of the proposed RBM model
to multiple viewpoints for music prediction, we combine
the pitch-only and the pitch & duration models. We use a
simple mixture-of-experts model, i.e., take the arithmetic
mean of the distributions each of the two models predicts
for pitch. The results of this are listed in the third row of
Table 1 and show an improvement over individual models.
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6. CONCLUSIONS & FUTURE WORK

We presented a distributed model based on the Restricted
Boltzmann Machine for multiple-viewpoint music predic-
tion. It was demonstrated how such a model can be a
scalable alternative to n-gram models for simultaneously
modelling sequences of multiple musical features. The
proposed model was evaluated in comparison with n-gram
models and was found to compare favourably with them.
It is able to make better use of information in longer event
contexts than n-gram models, and also scales linearly with
context length.

In the future, we would first like to address some of the
issues left open in the present research. These include ex-
periments with more promising viewpoint-type combina-
tions as reported in [7] and [20], the use of alternative data
fusion techniques like the weighted mixture- and product-
of-experts [20], and further optimization of the existing
model parameters. Previous research suggests that com-
bining the LTM and STM improves prediction performance
[7,20] and, in fact, the combined n-gram model reported
in [20] (mean cross-entropy: 2.479 for all datasets; 2.342
for the chorale dataset) outperforms the long-term RBMs
examined here. Given the improved performance of these
long-term RBMs, we expect adding a short-term compo-
nent will yield the best prediction performance yet observed
for this corpus. Extensions of the present model to handle
polyphony and higher-level musical structure will also be
explored. We would also like to apply the prediction model
described here to some of the MIR tasks listed in Section
1. The present model can be potentially extended into a
deep network, as demonstrated in [11], which is expected
to improve its performance further.
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